ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА И.П. ПАВЛОВА» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

На правах рукописи

Синяева Анна Сергеевна

Факторы риска, показатели структурно-функционального состояния миокарда, биомаркеры фиброза миокарда в оценке прогрессирования и развития неблагоприятных клинических исходов у пациентов с впервые выявленной фибрилляцией предсердий

3.1.20. Кардиология

Диссертация на соискание ученой степени кандидата медицинских наук

> Научный руководитель: доктор медицинских наук, профессор Евгений Владимирович Филиппов

ОГЛАВЛЕНИЕ

введение	4
ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ	12
1.1. Эпидемиология фибрилляции предсердий	12
1.2. Роль фиброза миокарда в развитии фибрилляции предсердий	13
1.3. Патогенез фиброза миокарда	14
1.4. Сигнальные пути при фиброзе и фиброгенез при фибрилляции	
предсердий	16
1.5. Молекулярные маркеры фиброза миокарда	18
1.6. Способы диагностики фиброза миокарда	24
1.7. Клинические исходы у пациентов с фибрилляцией предсердий	26
ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ	29
2.1. Дизайн исследования	29
2.2. Методы специальных исследований	35
2.2.1. Общеклинические исследования	35
2.2.2. Забор крови и проведение лабораторных исследований	37
2.2.3. Характеристика пилотного исследования на животных	37
2.3. Статистический анализ	40
ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ	42
3.1. Характеристика пациентов пилотного исследования	42
3.2. Пилотное исследование на крысах с индуцированным фиброзом	49
3.2.1. Анализ зависимости выраженности фиброза миокарда в зависимости от	
толщины кардиомиоцита ЛП	54
3.2.2. Характеристика показателей обмена коллагена и связь их с размером	
левого предсердия и фиброзом левого предсердия	56
3.3. Основные клинико-демографические характеристики пациентов с	
впервые выявленной фибрилляцией предсердий	57
3.4. Клинико-демографическая характеристика когорты пациентов с впервые	
зарегистрированной фибрилляцией предсердий без тяжелых хронических	

неинфекционных заболеваний	66
3.4.1. Анализ зависимости применения антикоагулянтной терапии и риска	
клинических исходов	78
3.4.2. Анализ зависимости уровня систолического артериального давления и	
размеров левого предсердия	78
3.4.3. Анализ связи факторов риска фибрилляции предсердий и	
неблагоприятных клинических исходов	79
3.4.4. Анализ влияния факторов риска фибрилляции предсердий на	
вероятность восстановления ритма	80
3.4.5. Анализ связи ТФР-в и риска неблагоприятных исходов.	
Прогностическая модель	81
3.4.6. Анализ связи уровня ТФР-β и риска повторных госпитализаций	83
3.4.7. Анализ связи между уровнем ТФР-β и характером восстановления	
ритма	84
3.4.8. Прогнозирование неблагоприятных клинических исходов у пациентов	
высокого риска с впервые выявленной фибрилляцией предсердий	85
3.5. Основные характеристики пациентов с впервые выявленной	
фибрилляцией предсердий, наличием или отсутствием хронических	
неинфекционных заболеваний	87
ЗАКЛЮЧЕНИЕ	92
ВЫВОДЫ	97
ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ	99
ПЕРСПЕКТИВЫ ДАЛЬНЕЙШЕЙ РАЗРАБОТКИ ТЕМЫ	100
СПИСОК СОКРАЩЕНИЙ	101
СПИСОК ЛИТЕРАТУРЫ	102

ВВЕДЕНИЕ

Актуальность и степень разработанности темы исследования

Фибрилляция предсердий — наиболее распространенное нарушение ритма сердца. Ее частота в общей популяции составляет около 1-2% [27]. Данная аритмия ассоциируется с увеличением летальности от всех причин, частоты инсультов и других тромбоэмболических осложнений у пациентов, приводит к развитию сердечной недостаточности, увеличению частоты госпитализаций, ухудшению качества жизни [27]. Как известно, в основе развития фибрилляции предсердий лежит процесс ремоделирования миокарда. Различные заболевания и состояния, в частности, артериальная гипертония, заболевания щитовидной железы, хроническая сердечная недостаточность, ожирение и сахарный диабет 2 типа могут оказывать влияние на состояние кардиомиоцитов, вызывать медленное, но прогрессирующее ремоделирование предсердий и повышать синтез цитокинов и коллагена в миокарде, что приводит к развитию прогрессирующего фиброза [2,6,7,19,24,31,36,100] и, как следствие, к развитию фибрилляции предсердий.

Определение предикторного значения факторов риска, цитокинов, как маркеров обмена коллагена в зависимости от степени фиброза миокарда, а также использование маркеров фиброза с целью оценки степени структурного ремоделирования предсердий и оценки прогнозирования течения фибрилляции предсердий, использование их как предикторов развития рецидива ФП является актуальной проблемой.

Исследования последнего десятилетия, направленные на изучение механизмов возникновения и прогрессирования ФП, показали значимость некоторых молекулярных маркеров фиброза в развитии данной патологии [1,69,76,89]. Несмотря на большое количество проводимых инструментальных и лабораторных исследований, их предикторная возможность в отношении впервые

выявленной фибрилляции предсердий остается дискуссионной. Достаточно высокая распространенность патологии и недостаточная чувствительность и специфичность диагностических методов исследования стали причинами для поиска новых стратегий диагностики, стратификации риска осложнений впервые выявленной ФП и понимания механизмов впервые возникшего нарушения ритма.

В связи с тем, что в основе развития нарушений ритма, в частности ФП, лежит процесс фиброза миокарда важным является дальнейшее изучение и оценка влияния процессов фиброза на риски возникновения и прогрессирования нарушений ритма, а также на риски неблагоприятных клинических исходов.

Цель исследования

Оценить значимость факторов риска, показателей структурнофункционального состояния и молекулярных биомаркеров фиброза миокарда в оценке прогрессирования и развития неблагоприятных исходов у пациентов с впервые выявленной фибрилляцией предсердий.

Задачи исследования

- 1. Оценить структуру факторов риска и коморбидных состояний у больных с впервые выявленной фибрилляцией предсердий, влияющих на неблагоприятные клинические исходы (смерть, рецидив/повторный/первичный ИМ, инсульт, РЧА, КАГ, повторная госпитализация по поводу сердечно-сосудистых событий (инфаркт, инсульт)).
- 2. Определить уровень сывороточных маркеров синтеза и деградации коллагена в крови у пациентов с впервые выявленной фибрилляцией предсердий.
- 3. Проанализировать связь между уровнем маркеров фиброза миокарда и структурно-функциональным состоянием ЛП у крыс с индуцированным фиброзом миокарда.

- 4. Оценить уровень маркеров обмена коллагена в зависимости от длительности эпизода нарушения ритма, а также от риска сохранения фибрилляции предсердий после попытки восстановления ритма у пациентов с впервые выявленной фибрилляцией предсердий.
- 5. Охарактеризовать неблагоприятные клинические исходы в течение года у пациентов с впервые выявленной фибрилляцией предсердий и определить связь с факторами риска, уровнем маркеров фиброза миокарда, характером медикаментозной терапии.

Научная новизна

Впервые исследован уровень трансформирующего фактора роста β, галектина-3 у пациентов с впервые выявленной фибрилляцией предсердий с целью комплексной оценки степени структурного ремоделирования предсердий у крыс и людей и прогнозирования неблагоприятных клинических исходов у пациентов с впервые выявленной фибрилляцией предсердий.

Впервые исследован уровень сывороточных маркеров синтеза и деградации коллагена в крови у крыс с индуцированным фиброзом миокарда и структурным ремоделированием сердца, впервые установлена взаимосвязь между показателями структурно-функционального состояния миокарда и маркерами фиброза у людей и крыс.

Впервые разработана прогностическая модель связи ТФР- β и риска неблагоприятных исходов, а также модель прогнозирования неблагоприятных клинических исходов у пациентов высокого риска с впервые выявленной фибрилляцией предсердий

Практическая значимость

Определяется важностью и актуальностью проблемы ФП и ее осложнений,

а также сложностями проведения инвазивной диагностики фиброза миокарда и поиском новых точных методов неинвазивной диагностике фиброза. Полученные результаты позволят внедрить в клинику использование маркеров фиброза миокарда с целью первичной диагностики степени фиброза во время впервые фибрилляции предсердий, а в зарегистрированного эпизода дальнейшем спрогнозировать возможность восстановления ритма и развития повторного эпизода нарушения ритма, а также стратифицировать риски развития осложнений. Результаты практическую исследования внедрены деятельность В отделений ГБУ РО «Областная терапевтического кардиологического И клиническая больница имени Н.А. Семашко», ГБУ РО «Областная клиническая больница», используются в педагогическом и научно-исследовательском процессе на кафедре поликлинической терапии, профилактической медицины и общей врачебной практики и кафедре факультетской терапии имени профессора В.Я. Гармаша ФГБОУ ВО РязГМУ Минздрава России.

Теоретическая значимость работы

Данное исследование вносит значительный вклад в понимание процессов возникновения и прогрессирования фиброза миокарда при нарушениях ритма, предоставляя обновлённый взгляд на механизмы развития фиброза миокарда и роли цитокинов, биомаркеров фиброза в этих процессах. А также демонстрирует вклад ХНИЗ и факторов риска в процессы возникновения и прогрессирования нарушений ритма, обусловленных фиброзом миокарда.

Методология и методы исследования

Исследование проводилось в 3 этапа. Первый этап — пилотное исследование, включившее 78 пациентов с впервые выявленной ФП и ХНИЗ от 18 лет и старше, госпитализированных в ГБУ РО ОККД в 2019-2020 гг., 2 этап —

пилотное исследование на крысах с модифицированной артериальной гипертензией, 3 этап — исследование, включившее 143 пациента от 18 лет и старше с верифицированной впервые выявленной ФП, госпитализированных в ГБУ РО ОККД в 2020-2021 гг., среди которых 50 больных с впервые выявленной фибрилляцией предсердий без ХНИЗ.

Протокол исследования был рассмотрен и одобрен локальным этическим комитетом ФГБОУ РО РязГМУ Минздрава России (протокол №1 от 12.09.2022). Для решения задач научно-исследовательской работы использовались следующие методы исследования: электрокардиография (ЭКГ), 24-часовое холтеровское мониторирование ЭКГ (ХМ-ЭКГ), трансторакальное эхокардиографическое исследование (ЭхоКГ), количественное определение в сыворотки кровибиохимических маркеров (галектин-3, ТФР-β).

Для крыс линии Wistar проведено измерение АД аппаратом MRBP system, анализ сыворотки крови на биохимические маркеры (галектин-3, ТФР-β). Морфометрическое исследование проводилось с помощью программы «Видеотест–Морфология 5.0».

Личный вклад автора

Автор принимал непосредственное участие в организации и проведении всех этапов исследования: разработка протокола исследования и базы данных пациентов и животных; анализ первичной медицинской документации; отбор пациентов для исследования; проведение общего осмотра пациентов; организация проведения инструментальных и лабораторных методов обследования, в том забор крови ДЛЯ исследования маркеров фиброза И числе подготовка биоматериала к транспортировке в лабораторию; организация работы с животными; разработка метода экспериментального моделирования фиброза миокарда, измерение уровня артериального давления крысам, сбор крови для исследования маркеров фиброза миокарда. Автором самостоятельно проведена статистическая обработка и интерпретация данных исследования; подготовка

оригинальных и обзорных статей по теме диссертационного исследования к публикации в журналах; подготовка докладов на отечественных и зарубежных научных конгрессах.

Положения, выносимые на защиту

- 1. У больных с впервые выявленной фибрилляцией предсердий факторами риска, ассоциированными с неблагоприятными исходами, являются: ожирение, артериальная гипертензия, гемодинамически значимые пороки сердца, заболевания щитовидной железы.
- 2. Средний уровень ТФР- β повышен в крови у пациентов с впервые выявленной фибрилляцией предсердий.
- 3. У крыс с индуцированной артериальной гипертензией определяется значимая взаимосвязь между уровнем ТФР- β и фиброзом миокарда, уровнем ТФР- β и размером ЛП.
- 4. У больных с впервые выявленной фибрилляцией предсердий без значимых хронических неинфекционных заболеваний регистрируется умеренное увеличение левого предсердия. Степень увеличения ЛП коррелирует с уровнем ТФР-β.
- 5. Средний уровень ТФР-β выше у пациентов с сохраняющейся фибрилляцией предсердий, чем у пациентов с восстановленным синусовым ритмом.

Степень достоверности и апробация результатов

Достоверность исследования подтверждена достаточной выборкой пациентов (143 человека). Получение первичных данных, анализ и обработка статистического материала проведена непосредственно автором. Статистическая обработка результатов исследования осуществлялась с помощью лицензионной

программы Excel 2010, jamovi 2.3.

Результаты диссертационного исследования представлены на конференциях: Форум «Кардиология XII века: альянсы и потенциалы» (Томск, февраль 2023), X Международный образовательный форум «Российские дни сердца» (Санкт-Петербург, апрель 2023), I съезд терапевтов Центрального федерального округа, посвященный 80-летию федерального государственного бюджетного образовательного учреждения высшего образования «Рязанский государственный университет имени академика И.П. Павлова» Министерства здравоохранения Российской Федерации (Рязань, июнь 2023), 18-й национальный конгресс терапевтов (Рязань, 21.10.2023), Ежегодная научная конференция, посвященная десятилетию науки и технологии И 80-летию Рязанского И.П государственного университета имени академика Павлова (Рязань, «Неинфекционные 06.12.2023), конференция заболевания фокусе врача-терапевта» (Рязань, 18.12.2023), кардиологический форум «Практическая достижения и перспективы» В рамках 8-й Всероссийской кардиология: конференции РКО «Нижегородская зима» с международным участием (Нижний Новгород, 02-03.02.2024), конференция «День тромбоза» (Рязань, 14.03.2024), межрегиональная научно-практическая конференция с международным участием «Актуальные вопросы терапии и ОВП» (Рязань, 15.05.2024), ежегодная научная конференция Рязанского государственного медицинского университета имени академика И.П. Павлова, посвященная 175-летию со дня получения им Нобелевской премии (Рязань, 19.12.2024), XIV Международный интернетконгресс специалистов по внутренним болезням (10-13 февраля 2025), «День тромбоза» (Рязань, февраль 2025).

Публикации

По материалам диссертационного исследования опубликовано 10 научных работ, из них 4 статьи в рецензируемых научных изданиях, рекомендованных ВАК при Минобрнауки России для публикации результатов диссертационных

исследований, 1 из которых – в издании, входящем в международную цитатноаналитическую базу данных Scopus.

Конфликт интересов

Исследование выполнено за счет средств ФГБОУ ВО РязГМУ Минздрава России. Иных финансовых и других конфликтных интересов, получения вознаграждения ни в какой форме от фирм производителей лабораторного и диагностического оборудования не было.

Структура и объем диссертации

Диссертационная работа имеет классическую структуру и включает: введение, 3 главы, заключение, выводы, практические рекомендации, перспективы дальнейшей разработки темы, список сокращений и список литературы, содержащий 129 источников. Диссертация изложена на 117 страницах машинописного текста, иллюстрирована 75 таблицами, 20 рисунками.

ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ

1.1. Эпидемиология фибрилляции предсердий

Фибрилляция предсердий (ФП) является социально-значимой экономической проблемой, существенно влияющей на ресурсы здравоохранения. Это связано с тем, что ФП — это лидирующая среди всех аритмий причина госпитализаций [37]. Широкая распространенность в популяции (около 2% в популяции в целом, более 3,5% - среди лиц старше 60 лет и более 9% - среди лиц старше 80 лет) обеспечивает значимое место данной аритмии среди других распространенных нарушений сердечного ритма с точки зрения ассоциации с сердечно-сосудистой смертностью [33].

Распространенность ФП в Европейской части РФ составляет 2,04%, возрастает у пациентов с сопутствующими ССЗ (4,2% у пациентов с АГ, 9,4% при наличии стабильной стенокардии, 8,2% - среди пациентов с СД 2 типа и 12,3% – XCH). у больных По данным некоторых исследований распространенность $\Phi\Pi$ увеличивается с возрастом от 0,1% в возрасте 20–29 лет до 9,6% в возрастной группе 80-89 лет, и к тому же коморбидность увеличивает риск присутствия ФП, особенно при наличии четырех и пяти сопутствующих коморбидных состояний [36]. В США в 2010 г. у 1,2 млн человек впервые была диагностирована ФП. Прогнозируется, что к 2030 г. число пациентов увеличится до 2,6 млн человек в год. [73]

Рост заболеваемости ФП также объясняется повышением выявляемости заболевания среди населения, неуклонным старением населения, увеличением выживаемости пациентов с сопутствующими патологиями, связанными с развитием ФП, а так же с увеличением продолжительности жизни [18]. Данная аритмия независимо связана с повышенной смертностью и неблагоприятным влиянием на качество жизни пациентов из за нарушения когнитивной функции, симптомов, непосредственно связанных деменции И c ФΠ (например, сердцебиения, одышки) [37]. Тем утомляемости, не менее, случаи

бессимптомного течения пароксизмальной и постоянной формы этой аритмии также не являются редкими и могут составлять около 25% среди всех пациентов с ФП [33]. Следовательно, представляется необходимым как оценка истинной распространенности ФП, так и ее выявление, поскольку именно первичная профилактика осложнений этой аритмии остаются актуальными задачами [33]. На данный момент уверенно можно утверждать, что именно бессимптомность течения ФП определяет гораздо более значимый риск развития осложнений данной аритмии.

Анализ сердечно-сосудистой заболеваемости и смертности в РФ, странах Европы и США сегодня по-прежнему демонстрирует ФП как распространенную аритмию с высоким риском фатальных и не фатальных осложнений. Кроме того, по-прежнему часто регистрируются случаи прогрессирования ФП с переходом ее пароксизмальной формы в постоянную [43]. В соответствии с рекомендациями общества как Европейского кардиологов (ESC), так Российского кардиологического общества (РКО) каждый произошедший инсульт головного мозга неясного генеза должен рассматриваться предмет на наличия бессимптомной пароксизмальной формы ФП [33,58]. Исходя из статистических данных РКО, не менее, чем каждый шестой инсульт возникает у больного с ФП [32].

Известно, что для ФП характерно волнообразное, прогрессирующее течение процесса с быстрым или медленным переходом аритмии из пароксизмальной формы в постоянную. Это течение способствует росту тромбоэмболических осложнений и возможной инвалидизации таких пациентов, независимо от их возраста. При этом звенья патогенеза фатальных и нефатальных осложнений у пациентов с ФП на сегодняшний день достаточно хорошо изучены.

1.2. Роль фиброза миокарда в развитии фибрилляции предсердий

Возникновение фибрилляции предсердий связано с высоким риском развития тромботических осложнений, инфаркта миокарда и инсульта. В основе

такой клинически значимой аритмии лежит процесс диффузного фиброза миокарда. Риск развития нарушений ритма, в том числе ФП, связан с выраженностью фиброза миокарда [85]. Ремоделирование при фиброзе миокарда включает в себя ряд изменений, которые ассоциированы с развитием нарушений ритма. К таким изменениям относят: нарушение функционирования ионных каналов, уменьшение межклеточных контактов, изменение в структуре ткани миокарда. При фиброзе создаются условия для развития аритмий по механизму ге-епtry и для развития аритмий, связанных с аномальным автоматизмом или триггерной активностью.

В нескольких исследованиях было установлено, что сами фибробласты могут влиять на электрическую функцию кардиомиоцитов. Они могут синтезировать ряд цитокинов, которые блокируют калиевые и натриевые каналы, что приводит к изменению продолжительности и амплитуды потенциала действия [72,74,112].

1.3. Патогенез фиброза миокарда

Сердечные фибробласты содержатся в миокарде и составляют около 10-20% от всех клеточных популяций сердца [1]. Фибробласты сердца являются центральным типом клеток, экспрессирующих и депонирующих фибриллярный экстрацеллюлярный матрикс (ЕСМ) [2]. Они регулируют пролиферацию кардиомиоцитов, способствуют формированию сети внеклеточного матрикса. В процессе формирования фиброза, фибробласты проходят через несколько стадий. Сначала как провоспалительные клетки (опосредуют рекрутирование лейкоцитов, секретируя цитокины), затем под действием противовоспалительных сигналов дифференцируются в миофибробласты – основные клетки, продуцирующие белки внеклеточного матрикса. Bo время формирования фиброзной ткани миофибробласты переходят в фиброциты, которые поддерживают такое состояние ткани [1,3]. Дифференцировка в миофибробласты патологически активируется биологически активными веществами, такими, как TGF-β, фактор роста тромбоцитов (PDGF), эпидермальный фактор роста (EGF), фактор роста фибробластов (FGF), фактор некроза опухоли α (TNF-α), ангиотензин II (Ang II), интерлейкин-1 (IL-1), интерлейкин 4 (IL-4) и альдостерон [1,5]. В исследованиях продемонстрировано, что другие типы клеток миокарда, включая макрофаги [1,6], тучные клетки, резидентные эндотелиальные клетки кардиомиоциты [1] секретируют больше провоспалительных медиаторов в пораженном сердце, а относительный вклад фибробластов активацию воспалительного ответа остается неясным. Кроме активации сердечных фибробластов в пораженном миокарде происходит активация иммунных клеток. Индукция и высвобождение провоспалительных цитокинов приводит к активации и миграции вместо воспаления нейтрофилов и моноцитов. Незрелые нейтрофилы и лейкоцитов в фиброзной ткани. Из увеличивают количество моноцитов моноцитов образуются макрофаги, которые могут оказывать провоспалительное действие, способствовать ангиогенезу, отложению коллагена, стимулированию лимфангиогенеза [4,10]. Лимфоциты (В-клетки и Т-клетки) менее распространены в миокарде, но они также являются частью постоянного иммунного компонента фиброза $\lceil 10 \rceil$. Макрофаги миокарда также участвуют процессах ремоделирования миокарда, так они фагоцитируют мертвые клетки, что приводит Т-клеток, обладающих противовоспалительными свойствами к привлечению [10]. Повреждение миокарда индуцирует комплементарные ответы В-клеток и увеличивает секрецию цитокинов (например, TNF-α, IL-1β, IL-6 и TGF-1β), синтез коллагена и прогрессирование фиброза [10]. Ремоделирование миокарда неконтролируемым, когда острый воспалительный может стать затягивается и, когда реакция положительного ремоделирования переходит в патологическую [10].

Когда хроническое воспаление, обусловленное повышенной секрецией медиаторов фибробластами и миофибробластами сохраняется достаточно длительно, то это способствует развитию фиброза миокарда, замедлению скорости и проведения импульса, повышенному риску развития аритмии [10]. Фиброз миокарда остается актуальной проблемой при заболеваниях

сердца. Пролиферативные и секреторные функции миофибробластов приводят к образованию фиброзных рубцов, возникновению сердечной недостаточности и фибрилляции предсердий. Непонимание роли иммунного ответа в течение фиброза миокарда и малое количество информации о молекулярных сигналах, регулирующих фенотипические изменения фибробластов, ограничивают применение противофиброзной терапии.

Многие обзоры описывают воспаление как критическую движущую силу множества патологических реакций, и работы продемонстрировали, что не только цитокины, НО сами иммунные клетки играют И активную профибротическую роль, часто посредством взаимодействия с фибробластами [12]. Поскольку фиброз миокарда представляет собой сложный процесс, приводящий к накоплению внеклеточного матрикса (ВКМ). Следовательно, важно понимать физиологическую структуру экстрацеллюлярного матрикса и ее патологические изменения при различных заболеваниях.

1.4. Сигнальные пути при фиброзе и фиброгенез при фибрилляции предсердий

Фиброгенез в тканях осуществляется с помощью ряда сигнальных механизмов (Рисунок 1). Эти каскады часто запускаются воздействием на клетки циркулирующих молекул цитокинов, интегринов, вазоактивных пептидов, которые в итоге стимулируют биосинтез и секрецию белков внеклеточного матрикса [39].

По данным исследований, интегрины имеют решающее значение в патогенезе фиброза, стимулируя фиброгенез [12]. На Рисунке 1 показаны примеры основных путей при фиброзе [55].

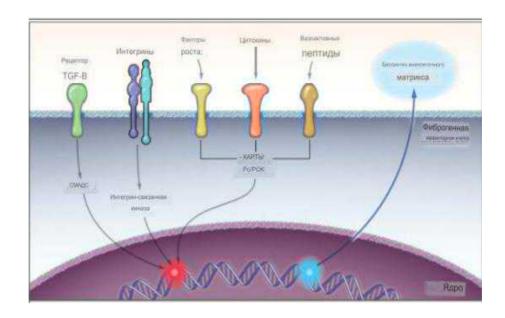


Рисунок 1– Молекулярные пути при фиброзе [55]

Еще одним важным элементом, участвующим в активации сигнальных каскадов, является альдостерон. Он стимулирует пролиферацию фибробластов и синтез коллагена I и III типов, ответственных за формирование рубцовой ткани [65]. Альдостерон совместно с ангиотензином II увеличивают выработку фибробластами ингибитора активатора плазминогена-1 и тканевого фактора роста β — мощных стимуляторов синтеза коллагена и блокаторов активности матриксных металлопротеиназ [13,110].

В сердце при фиброзе повышается уровень олигопептида Ang II, который отвечает вызывает сужение сосудов И за развитие артериальной гипертензии. Ангиотензинпревращающий фермент (АПФ) и ренин, которые активируют выработку Ang II, вырабатываются фибробластами и макрофагами в поврежденном миокарде [59,89]. Исследования, как in vivo, так и in vitro предполагают, что Ang II участвует в передаче сигналов трансформирующего фактора роста (ТФР). Экспрессия ТФР 1 индуцируется Ang II в фибробластах и кардиомиоцитах через рецептор Ang II типа 1 (AT1), который играет решающую роль в профибротической передаче сигналов [42,49] и *in vivo* ТФР-β необходим Ang II для индуцирования, как фиброза, так и гипертрофии сердца [47,101].

1.5. Молекулярные маркеры фиброза миокарда

После повреждения сердца фибробласты дифференцируются в миофибробласты, которые обычно отсутствуют в здоровом сердце. Миофибробласты по фенотипу занимают промежуточное положение между фибробластом и гладкомышечной клеткой [51,86].

Миофибробласты в основном секретируют белки ЭЦП (эндоцитоплазматического матрикса), такие как периостин, коллаген I и III и фибронектин, а также ряд цитокинов, которые регулируют воспалительную реакцию в месте повреждения [128]. При заболеваниях сердца фиброзное ремоделирование, связанное с клеточными и молекулярными механизмами, приводит к различным нарушениям сердечной функции. Фибробласты должны быть стимулированы как механически, так и химически, чтобы подвергнуться дальнейшей дифференцировке [48].

Ряд цитокинов и биологически активных веществ, таких как фибронектин, галектин-3, ТФР-β являются ключевыми в развитии фиброза.

Галектин-3 — β-галактозидсвязывающий лектин играет регулирующую роль в фиброгенезе. Он широко экспрессируется различными типами воспалительных клеток, связывается с внеклеточными гликопротеидами и активирует фибробласты для увеличения отложения ими коллагена I [72,84,115].

Галектин-3 также экспрессируется во всех типах иммунных клеток (макрофаги, моноциты, дендритные клетки, эозинофилы, тучные клетки, естественные клетки-киллеры, а также активированные Т- и В-клетки), эпителиальных и эндотелиальных клетках и сенсорных нейронах [65,94]. Его эффект в развитии фиброза связан с образованием решетчатого комплекса, который способен связывать ТФР-β, тем самым пролонгируя его действие [27].

Галектин-3 преимущественно располагается в цитоплазме и в небольших количествах обнаруживается в ядре клеток. Кроме того, он секретируется на поверхность клетки и в биологические жидкости [94]. В цитоплазме галектин-3 необходим для поддержания гомеостаза клеток. Это достигается за счет его

взаимодействия с некоторыми белками, включая белки семейства В-клеточной лимфомы-2 и активированный гуанозин-5'-трифосфат ген K-Ras.

В ядре галектин-3 способствует сплайсингу пре-мРНК и регулирует транскрипцию генов. Внеклеточный галектин-3 модулирует межклеточные взаимодействия, в том числе, между эпителиальными клетками и внеклеточным матриксом. Таким образом, он участвует в дифференцировке клеток, воспалении, фиброгенезе И зашите [9,94]. Галектин-3 играет ключевую многочисленных процессах, включая рост клеток, апоптоз, сплайсинг пре-мРНК, дифференцировку, трансформацию, ангиогенез, воспаление, нескольких исследованиях также обсуждается роль галектина-3 в патогенезе ремоделирования миокарда, а также в различных аутоиммунных, онкологических и воспалительных процессах [589,107]. В исследованиях отмечается повышение уровня галектина-3 у пациентов с ожирением [107], а также у пациентов с фибрилляцией предсердий и МС (метаболический синдром) [13], у пациентов с преддиабетом и СД [117], у пациентов с МС и ишемической болезнью сердца (ИБС) [11] и больных ХСН [2].

По различным данным, высокие уровни циркулирующего галектина-3 связаны с повышенным риском неблагоприятных сердечно—сосудистых событий, в том числе развитии сердечной недостаточности, инфаркта миокарда, кардиомиопатии [38,64,71,122]. У мышей с ишемическим повреждением наблюдалось увеличение уровня галектина-3 в плазме крови в два раза [113]. По данным исследований, концентрация галектина-3 в плазме крови у пациентов с дилатационной кардиомиопатией и с сердечной недостаточностью всегда была выше, чем у пациентов без сердечной недостаточности. У пациентов с острым инфарктом миокарда уровень галектина-3 в сыворотке крови повышался сразу после инфаркта миокарда, а затем значительно снижался в течение 5 дней [116].

Эти данные могут указывать на то, что галектин-3 связан с образованием, дестабилизацией и разрывом атеросклеротической бляшки. Ван Кимменаде и соавт. отметили, что повышенный уровень циркулирующего галектина-3 является независимым предиктором 60-дневной смертности у пациентов с острой

сердечной недостаточностью [126]. Пациенты с уровнем галектина-3 в верхнем тертиле были более подвержены смерти от сердечно-сосудистых причин, чем пациенты с уровнем галектина-3 в среднем и нижнем тертилях. Пороговое прогнозирования сердечно-сосудистой значение галектина-3 ДЛЯ составило 27,7 нг/мл [69]. В целом, эти данные подтверждают, что повышенный уровень галектина-3 связан прогрессированием сердечно-сосудистых c заболеваний и неблагоприятным исходом.

Еще один мета-анализ [129] выявил, что более высокие уровни сывороточного галектина-3 были связаны с более высоким риском смертности пациентов с хронической сердечной недостаточностью. Так как сердечная недостаточность поражает не только сердце, но многие ткани и органы, а галектин-3 является биомаркером не специфичным для определенного органа, но специфичным для патогенеза, в частности воспаления или фиброза. Вполне вероятно, что другие органы или ткани также могут способствовать повышению уровня сывороточного галектина-3.

Согласно данным исследований [24], средние значения уровня галектина-3 статистически значимо выше у пациентов с ГЛЖ по сравнению с группой без признаков ГЛЖ. Также существуют достоверные данные, что у крыс галектин-3 участвует в повторном моделировании сердца и ингибирование синтеза галектина-3 с помощью генетических технологий или лекарственных препаратов может уменьшить ремоделирование сердца и облегчить фиброз миокарда [24, 50, 76, 78, 90, 95].

Проводились исследования для выявления связи галектина-3 и развития нарушений ритма. В исследовании Radoslaw Pietrzak концентрация галектина-3 в плазме крови была повышена и коррелировала с выбранными параметрами функции левого желудочка у подростков, страдающих желудочковой аритмией. В результате данного исследования сделаны выводы о том, что необходимы дальнейшие исследования, чтобы установить, является ли повышенная концентрация галектина-3 в плазме крови полезным биомаркером для скрининга молодых людей с желудочковой аритмией, которые подвержены риску

структурной патологии сердечно-сосудистой системы [99].

Еще одно исследование определило, что уровни экспрессии галектина-3 были повышены у пациентов с ФП, особенно при персистирующей ФП [41,107]. Более галектина-3 τογο, продукция независимо предсказывала предсердной возникновение рецидивов тахиаритмии после однократной процедуры абляции [41,49,117]. Галектин-3 независимо ассоциировался с впервые возникшей ФП [91], ремоделированием предсердий [118] и индексом объема левого предсердия у пациентов с ФП при сохраненной функции ЛЖ [108]. Однако результаты катетерной абляции не могут быть предсказаны с использованием уровней галектина-3 [67].

Галектин-3 секретируется воспалительными клетками и фибробластами и может разрушаться MMPS. Эксперименты на животных продемонстрировали, что галектин-3 может ускорять фиброз миокарда при заболеваниях сердца. Более того, циркулирующие уровни галектин-3 связаны со степенью фиброза миокарда и могут предсказывать повторную госпитализацию и смертность от всех причин СН. Галектин-3 является маркером для выявления раннего ремоделирования сердца без СН [70].

С учетом вышесказанного можно сделать вывод, что галектин-3 играет немаловажную роль в процессе синтеза коллагена и активации воспалительного взаимодействует с процесса [7]. также различными расположенными экстрацеллюлярном матриксе. Экспериментальные В клинические данные демонстрируют корреляцию между экспрессией гена галектина-3 и пролиферацией миофибробластов, фиброгенезом, заживлением тканей, воспалением и ремоделированием сосудов и сердца, а также тяжестью течения сердечной недостаточности [55].

Повышение уровня галектина-3 связано с высоким риском смерти от декомпенсации при острой и хронической сердечной недостаточности [55]. С 2013 года галектин-3 включен Американской Сердечной Ассоциацией как дополнительный маркер стратификации риска пациентов группы высокого риска возникновения неблагоприятных сердечно-сосудистых исходов (таких как смерть,

повторные госпитализации) [38]. Таким образом, можно сделать вывод, что галектин-3 участвует в ремоделировании сердечно-сосудистой системы, развитии ХСН и фиброза миокарда. Однако, данные литературы весьма неоднозначны, что позволяет проводить дальнейшие исследования с участием галектина-3 с целью определения его роли, как биомаркера в процессах фиброза миокарда.

По данным современной литературы, представители семейства ТФР- β могут играть важную роль в процессах, связанных с патофизиологией сердца, включая гипертрофию, фиброзное ремоделирование, активацию фибробластов и отложение внеклеточного матрикса [46, 60, 63, 77, 86]. Семейство ТФР- β состоит из 33 представителей, которые являются многофункциональными цитокинами, взаимодействующими с ТФР- β -рецепторами и запускающими сигнальные каскадные реакции в клетках [87].

У млекопитающих изоформы ТФР-β (ТФР-β1, -β2 и -β3) кодируются тремя различными генами, которые расположены на отдельных хромосомах [26, 123]. ТФР-в секретируется в виде комплекса, состоящего из трех белков, таких как ТФР-в, латентно-ассоциированный белок и латентный ТФР-в-связывающий белок. Этот комплекс активируется интегрин-опосредованным процессом [38, 78, 83, 97]. В дальнейшем при связывании со своим рецептором ТФР-в могут активировать различные процессы, которые могут быть Smad-зависимыми (канонический ответ) или Smad независимыми (неканонический ответ). ТФР-β приводит к фиброзу миокарда, активируя дифференцировку фибробластов в миофибробласты и усиливая отложение внеклеточного матрикса. Он также может подавлять разрушение внеклеточного матрикса, ингибируя ММП и повышая активность ТІМР. Существует три изоформы ТФР-β: ТФР-β1, ТФР-β2 и ТФР-β3 [81]. ТФР-в является основной изоформой и участвует в развитии фиброза сердца. В нормальных условиях ТФР-в находится в своей статической форме и становится активным при повреждении сердца. Небольшие количества ТФР-в могут способствовать обширному внутриклеточному ответу. ТФР-β связывается и ТФР-В рецептор ΤΦΡ-βΙΙ, активирует активируя Smad через ПУТЬ внутриклеточный рецептор ТФР-ВІ. Следовательно, путь Smad3 важен для

фиброза миокарда, индуцированного ТФР-в1 [109]. ТФР-в1 может опосредовать функции других важных молекул и нейрогормонов, таких как ангиотензин (Ang) II. Помимо своего действия на макрофаги, Ang II может усиливать активность ТФР-в1 в миофибробластах через рецептор АТ1 [118]. Гены, кодирующие белки эндоцитоплазматического матрикса (например, белки коллагена I и III), становятся более активными, что приводит К накоплению фиброзных тканей. Фиброз сердца, индуцированный ТФР-в1, связан с кардиомиопатией, утолщением клапана, дисфункцией клапана и электрофизиологическими ингибирование нарушениями. На ΤΦΡ-β1 животных моделях может предотвращать фиброз миокарда, ослабляя прогрессирование диастолической дисфункции [125]. ТФР-в1 активирует процессы фиброзирования и гипертрофию миокарда ЛЖ [107]. В экспериментальных условиях в культуре кардиомиоцитов была подтверждена роль в формировании гипертрофии. Также с активацией синтеза ТФР \(\beta \) ассоциируют фенотипическую неоднородность миофибробластов и способность образования этими клетками соединительной ткани, так как они ΜΟΓΥΤ синтезировать гликопротеиды, все виды коллагенов И матриксмодифицирующие белки [81]. Значение ΤΦΡ-β1 диагностике диастолической дисфункции ЛЖ при АГ было изучено в эксперименте на крысах АΓ, искусственно созданной которым были введены анти-ТФР-В1 нейтрализующие антитела. Было установлено, что введение нейтрализующих антител приводило к обратному развитию диастолической дисфункции за счет снижения миокардиального фиброза и образования коллагена I и III типов, не влияя на гипертрофию кардиомиоцитов. Полученные данные подтверждают, что ТФР-\(\begin{align*} 1 \) может использоваться в диагностике миокардиального фиброза [109]. С ТФР-\(\begin{align*} 1 \) также связывают формирование интерстициального фиброза и снижение эластических свойств миокарда при АГ. Результаты исследований демонстрируют значительную патогенетическую роль данного фактора в формировании у пациентов АГ. В частности, определена роль активации синтеза ТФР-в1 на возрастание АД [62]. ТФР-в1 возрастает более чем в 3 раза у пациентов с АГ в отличие от здоровых лиц. Также у пациентов с АГ обнаружено увеличение концентрации ТФР-β1, что коррелирует с увеличением продукции коллагена типа І [80]. Активация синтеза ТФР-β1 может иметь прямое отношение к повышению коллагенообразования І и ІІІ типов, и является главным фактором в формировании патогенеза структурно-функциональных нарушений при АГ. В конечном итоге гиперпродукция ТФР-β1 усиливает процессы фиброзирования миокарда, а, значит, приводит его к гипертрофии [128]. Активация сигнального пути ТФР-β1 индуцирует аккумуляцию эндоплазматического ретикулума как с помощью повышения его образования, так и ингибирования его распада. Доказательством считается данные исследования Seeland et al. [11,56], в котором у трансгенных мышей с увеличенной экспрессией кардиоспецифического ТФР-β1 выявлен наиболее выраженный фиброз сердца, который ассоциировался с блокированием активности ММП. В свою очередь, у гетерозиготных мышей с выключенным геном ТФР-β1 формировался наименее выраженный фиброз сердца, соответствовавший возрасту [11].

Вместе с тем, лечение крыс нейтрализующими антителами к ТФР- β 1 предотвращало развитие фиброза сердца и дисфункцию ЛЖ, развивающихся в ответ на перегрузку давлением [11,53]. Следовательно, данные исследования подтверждают вклад ТФР- β 1 в формировании фиброза сердца при ремоделировании ЛЖ.

Таким образом, данные исследований подтверждают ассоциацию фиброза миокарда с биохимическими маркерами, что обуславливает актуальность проведения исследований в этом направлении.

1.6. Способы диагностики фиброза миокарда

В последние годы актуальным направлением в диагностике фиброза миокарда является неинвазивная оценка интерстициального фиброза с использованием визуализирующих методов. Основным инструментальным методом исследования признана магнитная резонансная томография (МРТ) с контрастом. Внедрение визуализации с поздним усилением гадолинием в

клиническую практику с помощью МРТ открыло возможности для неинвазивной характеристики тканей миокарда. В отличие от ЭХО КГ с доплерографией, МРТ позволяет проводить более прямую «in vivo» характеристику тканей, выявляя участки с региональным расширением внеклеточного пространства, такие как фиброз и рубцы. МРТ с гадолинием позволяет получить изображение через 10-20 минут после введения парамагнитного контрастного вещества. Контрастные вешества гадолиния накапливаются любом расширенном на основе пространстве времени релаксации внеклеточном И из-за короткого отображаются в виде яркого сигнала в последовательностях градиентного эхо-импульсного сканирования с инверсией-восстановлением, тем самым отделяя поражённые участки от здорового миокарда. За последние 20 лет количество исследований, посвящённых МРТ с гадолинием, увеличилось, что подчёркивает диагностическую и прогностическую ценность этого метода [91,96,116].

«Золотым стандартом» качественной и количественной оценки фиброза миокарда является гистологическое исследование тканей, а именно, биопсия. Однако, данная процедура имеет ряд сложностей и ограничений. Проведение биопсии сердца характеризуется инвазивностью процедуры и высоким риском развития осложнений. Поэтому необходимо проводить дальнейшее изучение и поиск неинвазивных методов оценки фиброза миокарда.

В клинической практике косвенную оценку степени фиброза миокарда проводят с помощью ЭХОКГ. В основе метода лежат характеристики отраженного от миокарда ультразвукового сигнала: участки миокарда с большим количеством соединительной ткани обладают большей эхогенностью [12].

Двухмерная эхокардиография позволяет определить несколько параметров систолической и диастолической функции, но не обладает достаточной чувствительностью и специфичностью для характеристики тканей. Доказано, что стресс-эхокардиография позволяет получить косвенную информацию о наличии фиброза путем анализа параметров деформации. Действительно, фиброз вызывает аномальное утолщение эндокарда за счет увеличения жесткости миокарда и, как следствие, изменение в механике кардиомиоцитов, что отражается на параметрах

деформации, оцениваемых с помощью эхокардиографии с тканевой допплерографией [45,88].

В последнее время придается большое значение поиску новых доступных неинвазивных методов диагностики, в том числе маркеров миокардиального фиброза у больных с нарушением ритма и факторами риска ССЗ для последующего прогнозирования исходов и оценки эффективности проводимого лечения.

Ha данный момент ведется поиск наиболее доступных методов фиброза диагностики миокарда У пациентов с нарушением ритма сердечно-сосудистыми заболеваниями. Наиболее перспективными, специфическими неинвазивными маркерами являются трансформирующий фактор роста β1 (ТФР- β1), галектин 3. Преимуществами использования маркеров фиброза миокарда является малая инвазивность исследования, низкий погрешности исследования, а также то, что исследования может проводиться в течение всего периода обследования и лечения пациентов.

Анализ данных литературы позволяет сделать вывод, что неинвазивные косвенные способы оценки фиброза сердечно-сосудистой системы у пациентов с нарушением ритма, а именно с впервые выявленной фибрилляцией предсердий изучены недостаточно. В связи с этим, крайне важен поиск простых неинвазивных скрининговых методов и алгоритмов диагностики фиброза миокарда.

1.7. Клинические исходы у пациентов с фибрилляцией предсердий

Оценка исходов у пациентов с фибрилляцией предсердий (ФП) — актуальная задача из-за высокой распространённости заболевания, тяжести осложнений и необходимости принимать постоянную терапию с возможными побочными эффектами.

В исследованиях изучалась роль впервые диагностированной ФП на риски

клинических исходов. Большая смертность в течении года наблюдалась в группе с впервые диагностированной ФП среди всех форм ФП. Также в группе больных с впервые диагностированной ФП умерло почти в 2 раза больше пациентов - 46 (29,9 %) человек (из них 24 женщины), что достоверно больше, чем как в целом по всей группе больных с ФП, перенесших кардиоэмболический инсульт, так и у пациентов с другими формами ФП (p < 0,001) [16].

Среди пациентов, у которых впервые развилась ФП, предикторами смертности в стационаре были возраст, тяжесть заболевания, наличие в анамнезе ХСН и сохранение ФП после лечения. У пациентов с впервые возникшей ФП было увеличено время пребывания в отделении интенсивной терапии и в стационаре, а впервые возникшая ФП была предиктором увеличения общих расходов на лечение [92].

Во время исследования неблагоприятных клинических исходов у пациентов с неклапанной ФП за 2,9 лет отмечено, что 42 пациента скончались, произошло 9 нефатальных острых нарушений мозгового кровообращения и 3 нефатальных инфаркта миокарда. На отдалённые исходы влияли возраст, известные традиционные факторы риска сердечно-сосудистых заболеваний, наличие этих заболеваний, изменение внутрисердечной гемодинамики и полостей сердца по данным эхокардиографии, наличие сопутствующей анемии и более тяжёлой стадии хронической болезни почек, а также назначение препаратов, связанных с более тяжёлым течением заболевания.[21]

В трехлетнем исследовании Кучиной А.Ю с соавторами из 32 умерших пациентов с неклапанной ФП - 28 (90,3%) человек имели сочетание ХСН, ОНМК и ПИКС, что повлияло как на смертность (p<0,001), так и на относительный риск смерти (ОР 5,5, 95% ДИ 1,627-18,597, p=0,006). При этом умершие пациенты достоверно реже принимали какие-либо антикоагулянтные препараты (p<0,001), в том числе варфарин (p=0,031), что повлияло и на смертность, и на относительный риск смерти (ОР 0,268, 95% ДИ 0,120-0,601, p=0,001) [23].

В исследованиях также оценивались неблагоприятные клинические исходы у пациентов с постоянно формой ФП. Структура причин ССС выглядит

следующим образом: вследствие геморрагического инсульта умерли 15 больных (24,6%), от хронической недостаточности мозгового кровообращения - 7 больных (11,5%), вследствие острого инфаркта миокарда - 5 больных (8,2%), тромбоэмболии сосудов кишечника - 3 больных (4,9%), 2 больных от ишемического инсульта (3,2%) и большее количество - 29 больных имели хроническую недостаточность коронарного кровообращения (47,5%). При оценке выживаемости больных с постоянной формой ФП в зависимости от отсутствия факторов или наличия их в разных совокупностях, было отмечено, что наблюдается 100% смертность больных при наличии 6-7 ведущих факторов [30].

Таким образом, в связи с высокой распространенностью фибрилляции предсердий, отсутствием малоинвазивных методов диагностики степени фиброза миокарда, исследование маркеров фиброза миокарда является весьма актуальной задачей. Учитывая тот факт, что фибрилляция предсердий ассоциируется с высокой смертностью и развитием сердечно-сосудистых осложнений, на данном этапе актуальным становится исследование влияния различных факторов на риски развития этих осложнений. Именно данные вопросы являются предметами настоящего исследования.

ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ

2.1. Дизайн исследования

Работа ФГБОУ BO РязГМУ В Минздрава России. выполнена Клиническими базами выступили: ГБУ PO «Областной клинический кардиологический диспансер», ГБУ РО «Областная клиническая больница имени Н.А. Семашко» , ГБУ РО «Городская клиническая поликлиника №6», ГБУ РО «Городская клиническая поликлиника №11», ГБУ РО «Областная клиническая больница» с 2018 по 2024 год (84 месяца). Протокол исследования был рассмотрен и одобрен локальным этическим комитетом ФГБОУ РО РязГМУ Минздрава России (протокол №7 от 08.02.2019, протокол №1 от 12.09.2022).

Средний срок наблюдения пациентов составил 12,8 [8;13,2] месяцев. Исследование включало несколько этапов (Рисунки 2, 3, 4).

На первом этапе с 2018 по 2019 гг. было выполнено пилотное исследование, включавшее в себя 78 пациентов с впервые зарегистрированной фибрилляцией предсердий и хроническими неинфекционными заболеваниями (Рисунок 2).

ХНИЗ считались сердечно-сосудистые заболевания (ишемическая болезнь сердца, цереброваскулярная болезнь), онкологические заболевания любой локализации, сахарный диабет, бронхолегочные заболевания. ФП определена в соответствии с клиническими рекомендациям Российского кардиологического общества, одобренными Министерством здравоохранения Российской Федерации от 2020 года (при записи ее на стандартной 12-канальной электрокардиограмме (ЭКГ) или при наличии ее на протяжении всей записи одного отведения при длительном мониторировании ЭКГ). Полученные результаты пилотного исследования, в том числе, и по маркерам фиброза миокарда, выявили необходимость оценки уровня маркеров и закономерности их повышения у интактных по хроническим заболеваниям особей, но с прогрессирующим фиброзом сердечной мышцы.

Рисунок 2 – Дизайн когортного исследования. 1 этап

Вторым этапом с 2021 по 2024 г. проводился эксперимент на крысах линии Wistar с индуцированным фиброзом миокарда. Исследование проводилось на 22 крысах возраста 13-14 недель. Крысам моделировался фиброз миокарда методом одной из почек и формированием артериальной гипертензии. удаления Производились замеры уровня артериального давления до моделирования эксперимента, а также ежемесячно вплоть до эвтаназии. Посмертно крысам проводился крови маркеры фиброза анализ на миокарда, a также морфометрический анализ срезов сердечной мышцы (Рисунок 3).

После подтверждения значимости маркеров фиброза миокарда у крыс был запланирован 3 этап исследования с включением группы пациентов без XHИЗ, но с предполагаемым фиброзом миокарда.

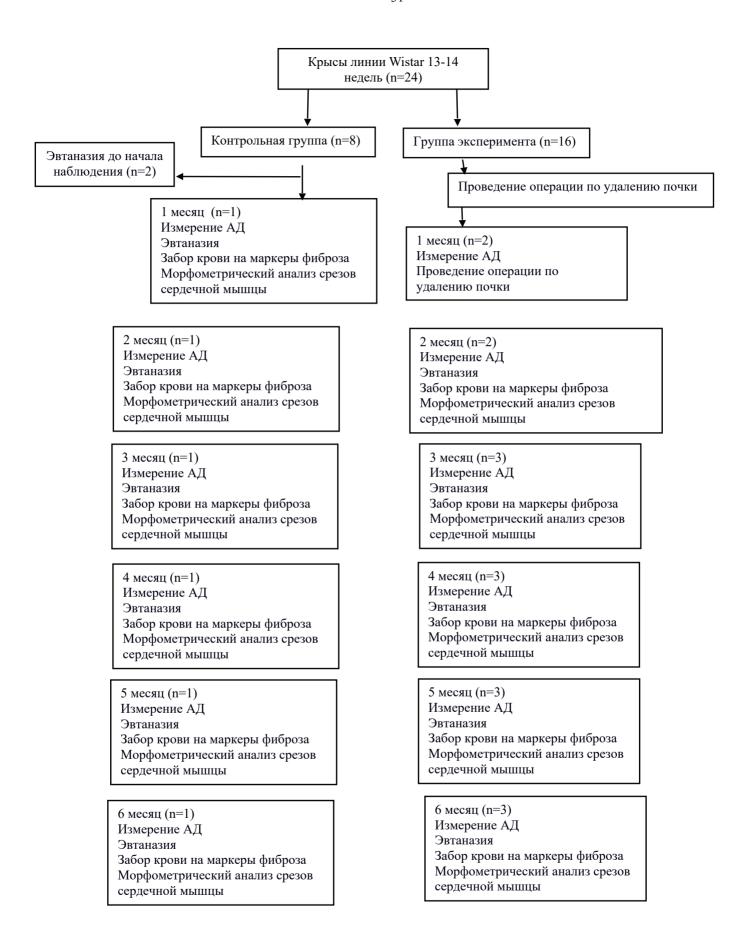


Рисунок 3 – Дизайн когортного исследования. 2 этап

Третьим этапом проводилось исследование пациентов с отсутствием XHИЗ. В соответствии с задачами было проведено исследование согласно представленному алгоритму (Рисунок 4).

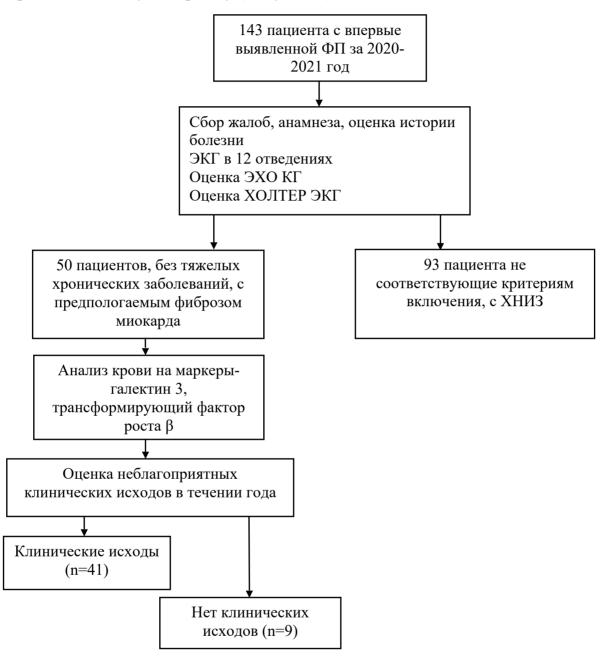


Рисунок 4 – Дизайн когортного исследования. 3 этап

Оно включило 143 пациента с впервые выявленной фибрилляцией предсердий от 18 лет и старше с верифицированной впервые выявленной ФП, госпитализированных в ГБУ РО ОККД в 2020-2021 гг., среди которых 50 больных с впервые выявленной фибрилляцией предсердий, соответствующих критериям

включения, отсутствие заболеваний, характеризующихся TOM числе, выраженным фиброзом (хроническая болезнь почек, инфаркт миокарда, цирроз печени). ФП определена в соответствии с клиническими рекомендациям Российского общества, одобренными кардиологического Министерством здравоохранения Российской Федерации от 2020 года (при записи ее на стандартной 12-канальной электрокардиограмме (ЭКГ) или при наличии ее на протяжении всей записи одного отведения при длительном мониторировании ЭКГ).

Основная когорта пациентов формировалась по критерию наличия впервые зарегистрированной фибрилляции предсердий, а затем к основной когорте применялись установленные критерии включения.

Критериями включения являлись:

- Подписанное информированное согласие.
- Возраст ≥18 лет.
- Впервые зарегистрированная фибрилляция предсердий.

Критериями исключения являлись:

- Признаки застойной сердечной недостаточности (отёки нижних конечностей, гепатомегалия, набухание шейных вен, влажные хрипы в лёгких).
- Тяжелые системные заболевания с ожидаемой продолжительностью жизни менее 1 года.
 - Хронические заболевания легких, требующих кислородотерапии.
- Инфильтративная или гипертрофическая обструктивной кардиомиопатии или констриктивный перикардит.
- Гемодинамически значимая нескорректированная болезнь клапанов сердца, обструктивная или регургитационная болезнь или заболевание клапанов, которое, как ожидается, приведет к хирургическому вмешательству во время исследования.
- Имплантированный кардиовертер-дефибриллятор, ЭКС или вспомогательное устройство левого желудочка.

• Заболевания, характеризующихся выраженным фиброзом (хронический панкреатит, цирроз, инфаркт миокарда в анамнезе, ХБП) в анамнезе.

Все пациенты 1 и 3 этапов прошли комплексное обследование, включавшее сбор жалоб, изучение анамнеза, физикальное обследование, антропометрические измерения, ЭКГ в 12 отведениях, ЭхоКГ, а также оценка риска кровотечений по шкале HAS-BLED и риск инсульта по шкале CHA2DS2-VASc, характеристику назначенной терапии. Пациентам 1 этапа, соответствующим критериям включения, исследовали уровни галектина-3, трансформирующего фактора роста В, фибронектина. В дальнейшем, на 3 этапе исследования данный маркер не исследовался в связи с отсутвием значимых клинических результатов.

У всех пациентов, независимо от того, включены они в конечное исследование или нет, через 1 год оценивались неблагоприятные клинические исходы. Неблагоприятные клинические исходы характеризовались следующими конечными точками: смерть, рецидив/повторный/первичный ИМ, инсульт, РЧА, КАГ, повторная госпитализация по поводу сердечно-сосудистых событий (инфаркт, инсульт, рецидив ФП).

На первом этапе с 2018 по 2019 гг. было выполнено пилотное исследование, включившее в себя 78 пациентов с впервые зарегистрированной фибрилляцией предсердий и хроническими неинфекционными заболеваниями.

Затем, 2 этапом проведено пилотное исследование на крысах линии Wistar с 2021-2024 гг. в связи необходимостью изучить уровень маркеров фиброза миокарда и сопоставить их с морфометрической картиной срезов сердечной мышцы. Третим этапом проводилось непосредственно настоящее исследование с 2020-2021 гг., включившее в себя 143 пациента с впервые выявленной ФП из пациентов которых 50 без ХНИЗ. Bce пациенты обследовались установленному протоколу. При включении в исследование проводился сбор жалоба, анамнеза, оценка истории болезни, лабораторные и инструментальные методы обследования.

2.2. Методы специальных исследований

2.2.1. Общеклинические исследования

Антропометрическое обследование: рост оценивался с помощью ростомера, без обуви и верхней одежды, с точностью до одного см. ИМТ рассчитывали как отношение массы тела (кг) к квадрату роста (м²). Масса тела фиксировалась с точностью до 0,1 кг; Оценка степени ожирения проводилась по классификации ВОЗ, 1997 года (Таблица 1).

Таблица 1 – Классификация ожирения по ИМТ

Масса тела	ИМТ (кг/м²)
Дефицит массы тела	<18,5
Нормальная масса тела	18,5-24,9
Избыточная масса тела	25-29,9
Ожирение 1 степени	30-34,9
Ожирение 2 степени	35-39,9
Ожирение 3 степени	>40

Курящими пациентами считались пациенты, которые указывали на акт курения в анамнезе — выкуривающие ≥1 сигареты/папиросы в сутки или бросившие курить менее года назад. Злоупотребляющими алкоголем считались пациенты, которые набирали 8 и более баллов по опроснику AUDIT—С. Исходно высокая ЧСС определялась по данным анамнеза (стабильное повышение ЧСС>80 уд/мин, измеренное на а. radialis за 60 сек). Пациентами с заболеваниями щитовидной железы считались те, кто указывал на заболевание в анамнезе и принимал препараты заместительной гормональной терапии или при случайном изменении уровня гормонов выявлено их повышение. Гемодинамически значимые пороки сердца определялись по данным Эхо-КГ при регургитации на клапанах 3-4 степени, а также при их стенотическом поражении любой этиологии, которое могло привести к хирургическому вмешательству во время исследования;

Измерение уровня АД проводилось на лучевой артерии механическим тонометром Отпоп (Япония) в положении сидя, после 10-минутного отдыха на обеих руках.

Манжета для измерения артериального давления была соответствующего размера. Уровень АД измерялся двукратно с интервалом 2–3 минуты. При анализе учитывалось среднее значение при двукратном измерении. АГ фиксировалась при уровне САД ≥140 мм рт. ст. и/или ДАД ≥90 мм рт. ст.

Электрокардиографическое исследование: Всем пациентам проведена электрокардиограмма (ЭКГ) в 12 отведениях с целью определения признаков гипертрофии миокарда, рубцовых изменений, диагностики нарушений ритма и проводимости, ЭКГ признаков электролитных расстройств

Эхокардиография: Комплексное трансторакальное ультразвуковое исследование сердца выполняли на ультразвуковой системе Phillips Affiniti 70 (Нидерланды) с помощью трансторакального датчика S5–1 с частотой излучения 5 МГц в покое в положении лежа на левом боку согласно рекомендациям Американской ассоциации эхокардиографии. Во время ЭХО КГ проводились стандартные измерения: толщины МЖП и задней стенки (3С) сердца; конечного систолического и диастолического размера (КСР и КДР) и размеров левого желудочка (ЛЖ) и левого предсердия (ЛП); фракции выброса левого желудочка (ФВЛЖ); ударного объема ЛЖ; размеров правого желудочка (ПЖ); проводилась оценка зон гипокинеза.

Измерение внутренних размеров ЛЖ проводилось в парастернальной позиции по длинной оси ЛЖ на уровне створок митрального клапана в В-режиме или в М-режиме под контролем В-режима. В М-режиме были изучены: КДР ЛЖ, КСР ЛЖ. Нормативные значении линейных измерений ЛЖ для КДР и КСР ЛЖ составляют для женщин = 3,9-5,3 см; для мужчин = 4,2-5,9 см и для женщин = 2,8-3,3 см; для мужчин = 2,5-4,0 см, соответственно [103].

Для диагностики систолической дисфункции миокарда использованы такие эхокардиографические показатели как фракция выброса. Измерение фракции выброса ЛЖ произведена в В-режиме по методу Симпсона. Общепринятое нормальное значение $\Phi B > 50\%$ и рассчитывается по формуле [5,103]: $\Phi B = (KДО - KCO) / KДO$.

Для измерений размера ЛП использовался передне-задний линейный размер

из парастернальной позиции по длинной оси ЛЖ в М-режиме. Измерение выполнялось от переднего края задней стенки аорты до переднего края задней стенки ЛП. Нормативные значения передне-заднего размера ЛП у женщин= 2,7-3,8 см, у мужчин = 3,0-4,0 см [5,103].

Оценка показателей 24-часового холтеровского мониторирования ЭКГ, выполненного на амбулаторном этапе: регистрация минимальной, средней и максимальной ЧСС, количества наджелудочковых экстрасистол (НЖЭ), количества желудочковых экстрасистол (ЖЭС), количества пробежек наджелудочковой тахикардии (НЖТ).

2.2.2. Забор крови и проведение лабораторных исследований

Всем пациентам проводилось исследование уровня галектина-3 в сыворотке крови иммуноферментным анализом (ИФА) с помощью наборов «ELISA» фирмы RayBiotech (Австрия), трансформирующего фактора роста β с помощью наборов «ELISA» фирмы Elabscience (Китай) в научно-исследовательской лаборатории ФГБОУ ВО РязГМУ Минздрава России.

Забор крови и скрининговые лабораторные исследования осуществлялись в ФГБОУ ВО РязГМУ Минздрава России. Образцы периферической (венозной) крови собирались в асептических условиях с использованием стерильных игл и переходников утром, натощак (не менее 6-12 часов после последнего приема пищи) в процедурном кабинете, в условиях физиологического покоя из локтевой вены с соблюдением правил асептики и антисептики в пробирки без наполнителя. Затем образцы отстаивались при комнатной температуре, центрифугировались в течение 15 минут при 1000 g. Готовая сыворотка замораживалась при температуре минус 20 градусов, срок хранения не более 6 месяцев.

2.2.3. Характеристика пилотного исследования на животных

Пилотное исследование проводилось на 24 крысах линии Wistar возраста

13-14 недель. Крысам моделировалась артериальная гипертензия методом удаления одной из почек. При данном способе моделирования гипертензии на первом этапе крысам линии Wistar проводится наркотизирование с помощью в/м введения 0,15 мл ксилозолетинового наркоза, вторым этапом является выделение правой почки с помощью транслюмбального доступа. Третьим этапом происходит перевязка почечной ножки на зажиме и удаления правой почки (Рисунок 5).

Рисунок 5 — Модель артериальной гипертензии на крысах линии Wistar Примечание — 1 — выделение правой почки, 2 — удаление правой почки, 3 — крысы после оперативного удаления почки транслюмбальным доступом

Рисунок 6 – Аппарат для измерения уровня артериального давления животным MRBP system

Контроль формирования артериальной гипертензии осуществлялся неинвазивным методом с помощью аппарата MRB system фирмы IITC Life

Science (Англия) на 1, 2, 3, 4, 5, 6 месяцы для подтверждения воспроизводимости эксперимента (Рисунок 6).

Также крысам осуществлялся морфологический и морфометрический анализ срезов сердечной мышцы. Гистологические препараты из материала, полученного в ходе выведения животного из эксперимента, изготавливались по стандартной методике. Дополнительно препараты окрашивались по Ван–Гизону для качественной и количественной оценки соединительнотканного компонента миокарда. Морфометрическое исследование проводилось с помощью программы «Видеотест–Морфология 5.0».

Уровень фиброза определялся полуколичественным методом с последующей классификацией выраженности фиброза по стадиям:

0 — отсутствие фиброза; 1 — единичные очаги слаборазвитого межмышечного и/или периваскулярного фиброза; 2 — множественные ограниченные очаги межмышечного и/или периваскулярного фиброза; 3 — множественные сливающиеся между собой очаги межмышечного и/или периваскулярного фиброза или поля диффузного кардиосклероза.

Гипертрофия кардиомиоцитов определялась при средней ширине кардиомиоцита 10,94 мкм и более (по данным контрольной группы крыс).

А для подтверждения фиброза миокарда осуществлялся анализ крови на маркеры фиброза миокарда – галектин-3, трансформирующий фактор роста β. Кровь для исследования бралась из нижней полой вены после эвтаназии животных. Всем крысам проводилось исследование уровня галектина-3 в сыворотке крови иммуноферментным анализом (ИФА) с помощью наборов «ELISA» фирмы RayBiotech (Австрия), трансформирующего фактора роста в с «ELISA» Elabscience научнопомощью наборов фирмы (Китай) исследовательской лаборатории ФГБОУ ВО РязГМУ Минздрава России. Образцы крови центрифугировались и полученная сыворотка замораживалась при -20°C (Рисунок 7).

1 2 3
PHONHOK 7 A HEODHEM PROTEIN KNOPH V KNIP CHIMIN

Рисунок 7 — Алгоритм взятия крови у крыс линии Wistar Примечание — 1 — взятие крови из центральной вены, 2 — заполнение пробирок, 3 — центрифугирование проб крови

2.3. Статистический анализ

Обработка данных проводилась с применением стандартного пакета прикладных программ IBM SPSS Statistics V.30 и статистической программы Jamovi 2021 для персонального компьютера, включая методы параметрического и непараметрического Проверка анализа. параметров на нормальность распределения признаков проводили по критерию р Шапиро-Уилка. Нормальным распределение считалось при р>0,05. Описательная статистика использовалась для характеристики результатов исследования. Исходные количественные переменные представлены в виде среднего арифметического значения (М)±, среднеквадратичное отклонение (SD) для нормально распределенных критериев или медианы (Ме) с интерквартильным размахом 25–75 процентиль при отличном распределении, существенно OT нормального. Средние сравнивались при помощи критерия Манна-Уитни. При сравнении групп различия считались статистически значимыми при р<0,05 Различия между экспериментальной и контрольной группой оценивались согласно точному тесту Фишера (p<0,05). При анализе взаимосвязи признаков пользовались методом анализа корреляций Пирсона (при распределении близком к нормальному) или

Спирмена (в противоположном случае). Корреляция между признаками считалась значимой при р<0,05. Зависимость между признаками оценивалась при помощи бинарной логистической регрессии и множественной логистической регрессии. Регрессионная значимой p<0,05. модель считалась при Определялась специфичной Регрессионные чувствительность И модели. коэффициенты использовались для оценки вариации между двумя зависимыми переменными. Связь между факторами риска и клиническими исходами оценивалась с помощью критерия относительного риска с 95% доверительным интервалом. Оценка шансов использовалась ДЛЯ уточнения вероятности возникновения неблагоприятных исходов у пациентов с 95% доверительным интервалом. ROC анализ использовался для построения ROC кривой, площадь под которой говорила о достоверности результатов исследования. ROC анализ использовался для определения точки cut-off.

ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

3.1. Характеристика пациентов пилотного исследования

В пилотное исследование было включено 78 пациентов с впервые зарегистрированной фибрилляцией предсердий. Средний возраст пациентов был 63,0±11,1 лет, большинство пациентов было женского пола 53,25% (42 человека). Средний уровень САД на момент включения в исследование был 136 [128;144] мм рт.ст., средний уровень ДАД 82 [78;86] мм рт.ст. (Таблица 2).

Таблица 2 – Основные характеристики когорты пациентов

Показатели	Пациенты			
Возраст, лет	63,0±11,1			
Пол	M:Ж=46,75%(36):53,25%(42)			
Рост, см	172 [165;177]			
Вес, кг	88 [78;98]			
ИМТ, кг/м²	29,3±2,56			
Средний уровень САД, мм рт.ст	136 [128;144]			
Средний уровень ДАД, мм рт.ст	82 [78;86]			

Среди факторов риска развития $\Phi\Pi$ чаще встречались артериальная гипертензия 76 (97,4%), избыточная масса тела 43(55,1%) и ожирение 32(41%), а также исходно высокая ЧСС 25(32,1%) (Таблица 3).

Таблица 3 – Факторы риска

Фактор риска	Показатель п (%)
Курение	12 (15,4%)
Злоупотребление алкоголем	7 (9%)
Ожирение	32 (41%)
Избыточная масса тела	43 (55,1%)
Артериальная гипертензия	76 (97,4%)
Заболевания щитовидной железы	10 (12,8%)
Пороки сердца	2 (2,56%)
Высокая ЧСС	25 (32,1%)

Анализ основных эхокардиографических показателей представлен в Таблице 4.

Таблица 4 – Основные эхокардиографические характеристики ЛЖ

Показатель	Значение		
КДР ЛЖ, см	5,2 [4,8;5,5]		
КСР ЛЖ, см	3,5 [3,3;3,8]		
ФВ по Симпсону, %	60 [55,5;63,3]		
Среднее значение размера ЛП, см	4,57 [4,2;4,77]		

Анализ основных показателей маркеров фиброза миокарда представлены в Таблице 5.

Таблица 5 – Показатели маркеров фиброза миокарда

Показатель	Значение		
Средний уровень трансформирующего фактора	40,5±20,4		
роста β, нг/мл			
Средний уровень галектина-3, нг/мл	18,6 [13,4;23,6]		

По данным исследования, у пациентов проводилась медикаментозная кардиоверсия 56 (74,7%), электрическая кардиоверсия у 14 (18,7%), спонтанное восстановление ритма произошло у 5 (6,7%) пациентов (Таблица 6).

Таблица 6 – Характеристика методов восстановления ритма

Вид	Значение, п(%)		
Электрическая кардиоверсия	14 (18,7%)		
Медикаментозная кардиоверсия	56 (74,7%)		
Спонтанная кардиоверсия	5 (6,7%)		

Для лечения пациентов применялись иАПФ 62 (82,7%), антиаритмические препараты 46 (61,3%), антиагреганты 21 (28%), антикоагулянты 52 (69,3%), статины 30 (40%), диуретики 14 (18,7%) (Таблица 7).

Таблица 7 – Медикаментозная терапия

Препарат	Значение, п(%)
иАПФ	62 (82,7%)
β-адреноблокаторы	54 (72%)
Статины	30 (40%)
Антиаритмические препараты	46 (61,3%)
Пропафенон	4 (8,7%)
Сотагексал	22 (47,8%)
Аллапинин	18 (32,6%)

	Продолжение Таблицы 7
Амиодарон	2 (4,3%)
Антиагреганты	21(28%)
Диуретики	14 (18,7%)
Антикоагулянты	52 (69,3%)
Виды	антикоагулянтов
Апиксабан	14 (26,9%)
Дабигатран	3 (5,8%)
Ривароксабан	24 (46,2%)
Гепарин	10 (19,2%)
Варфарин	1 (1,9%)

Большинство пациентов имели низкий риск кровотечений 65 (83,4%), высокий риск инсульта имели 41 (52,6%) (Таблица 8).

Таблица 8 – Характеристика пациентов по риску развития инсульта и кровотечений

Характеристика	Значение, n(%)		
Риск кровотечений HAS	BLED		
HAS-BLED, средний балл, ст откл	1,56 (0,667)		
низкий риск(<3)	65 (83,4 %)		
высокий риск(>3)	13 (16,6%)		
Риск инсульта CHA2DS2-	VASc		
CHA2DS2–VASc, средний балл, ст откл	1,7 (1,16)		
Низкий риск	5 (6,4%)		
Умеренный риск	32 (41%)		
Высокий риск	41 (52,6%)		

По данным анализа (Критерий Манна-Уитни), не выявлено достоверных различий между группой пациентов, принимавших антикоагулянтную терапию и клиническими исходами (p=0,448), а также между высоким риском тромбоэмболических осложнений и клиническими исходами (p=0,166) (Таблица 9).

Таблица 9 — Оценка достоверности различий между группами пациентов с неблагоприятными клиническими исходами в зависимости от назначения антикоагулянтной терапии и при высоком риске тромботических осложнений

Показатель	n	Критерий	p
Антикоагулянты	52	Манна-Уитни U	0,448
Высокий риск инсульта по шкале CHA2DS2–VASc	41	Манна-Уитни U	0,166

Для определения достоверности различий между маркерами фиброза миокарда, характером восстановления ритма и длительностью пароксизма ФП использовался тест Манна-Уитни для независимых выборок.

По данным анализа не выявлено достоверных различий между галектином-3 и характером восстановления ритма (p=0,466), а также между галектином-3 и длительностью пароксизма $\Phi\Pi$ (p=0,140).

Достоверных различий между уровнем ТФР- β и характером восстановления ритма не обнаружено (p=0,396). Выявлены статистически значимые различия между уровнем ТФР- β и длительностью пароксизма ФП (p=0,024*) (Таблица 10).

Таблица 10 — Оценка достоверности различий уровня ТФР- β и галектина-3 между группами в зависимости от восстановления ритма

	Группа	n	Среднее	Медиана	Критерий Манна- Уитни U, р
Трансформирующий	синусовый ритм	28	42,1	40,9	U= 580
фактор роста β	фибрилляция предсердий	47	39,6	36,1	p=0,396
	пароксизм менее 48 часов	29	45,5	48	U= 459 p=0,024*
	пароксизм более 48 часов	46	37,4	34,6	
Галектин-3	синусовый ритм	28	18,2	18,6	U= 591
	фибрилляция предсердий	47	20,7	17,4	p=0,466
	пароксизм менее 48 часов	29	20,9	20,7	U= 531 p=0,140
	пароксизм более 48 часов	46	18	17,5	
Примечание – значимость при *p<0,05					

Для проверки гипотезы о повышенном уровне ТФР- β и галектина-3 у пациентов в зависимости от количества госпитализаций был применен анализ достоверности различий в группах (Критерий Манна-Уитни). Значимых различий в группах ТФР- β (p<0,468) и галектина-3 (p=0,751) получено не было (Таблица 11).

Таблица 11 – Оценка достоверности различий уровня ТФР-β между группами в зависимости от количества госпитализаций

	Группа	n	Среднее	Медиана	Критерий Манна-
					Уитни U, р
Трансформирую	0 госпитализаций	38	38,7	37,3	U=634
щий фактор	1 и более	37	42,4	38,4	p<0,468
роста β	госпитализаций				
Галектин-3	0 госпитализаций	38	17,9	17,5	U=673
	1 и более	37	20,4	19,2	p=0,751
	госпитализаций				
Примечание – значимость при *p<0,05					

Анализ достоверности различий между уровнем маркеров фиброза миокарда и значимыми клиническими исходами (Критерий Манна-Уитни) у пациентов с ХНИЗ выявил значимые различия между уровнем маркеров ТФР- β и клиническими исходами.

У пациентов с неблагоприятными клиническим исходами уровни ТФР β были выше, чем у пациентов без клинически значимых исходов (U=7, p<0,049). Достоверных различий по уровню галектина-3 по клиническим исходам не было (U=177, p=0,558) (Таблица 12).

Таблица 12 – Анализ достоверности показателей уровней маркеров фиброза миокарда и значимых клинических исходов

	Группа	n	Среднее	Медиана	Критерий Манна Уитни U, р
Трансформирующий фактор роста β	неблагоприятных исходов нет	6	33	35,6	U=17 p=0,049*
	неблагоприятные исходы есть	69	41,2	38,4	U=17 p=0,049*
Галектин-3	неблагоприятных исходов нет	6	19,5	21,2	U=177 p=0,558
	неблагоприятные исходы есть	69	19,1	18,3	• •
Примечание – значимость при *p<0,05					

Корреляционный анализ Спирмена проводился для уточнения связи между показателями эхокардиографии и уровнем маркеров фиброза миокарда. В результате была получена значимая положительная корреляция (Таблица 13) между размером левого предсердия (ЛП) и конечным систолическим размером левого желудочка (КСР ЛЖ) (r=0,407,p=0,003), а также между размером левого желудочка и конечным диастолическим размером левого желудочка (r=0,363, p=0,010).

Однако, была обнаружена и обратная корреляционная связь между КСР ЛЖ и ФВ ЛЖ (r= -0.693, p<0.001), и КДР ЛЖ и ФВ ЛЖ(r= -0.347, p<0.012). Значимых корреляций между ТФР- β и показателями эхокардиографии, а также между галектином-3 и показателями эхокардиографии не обнаружено (Таблица 13).

Таблица 13 — Корреляция показателей структурно-функционального состояния сердечной мышцы и показателей маркеров фиброза миокарда

Показатель	Критерий	КДР	КСР	ΦВ	ЛП
КСР	Спирмен р(rho)	0,830***			_
	df (степеней свободы)	50			_
	р-значение	<0,001			_
ΦВ	Спирмен p(rho)	-0,347*	-0,693***		
	df (степеней свободы)	50	50		
	р-значение	0,012	<0,001		
ЛП	Спирмен p(rho)	0,363**	0,407**	-0,233	
	df (степеней свободы)	48	48	48	
	р-значение	0,010	0,003	0,103	
Галектин-3	Спирмен p(rho)	-0,071	-0,089	-0,071	-0,074
	df (степеней свободы)	51	50	50	48
	р-значение	0,611	0,532	0,615	0,608
ТФР β	Спирмен p(rho)	-0,110	-0,197	0,052	0,053
	df (степеней свободы)	51	50	50	48
	р-значение	0,435	0,162	0,716	0,715
Примечание –	значимость при *p<0,05				

Корреляционный анализ Спирмена проводился для уточнения связи между показателями эхокардиографии и уровнем маркеров фиброза миокарда. В результате анализа достоверных корреляций между уровнем ТФР-β и ИМТ, а также галектином-3 и ИМТ не выявлено (Таблица 14).

Таблица 14 – Корреляция показателей уровня ТФР-β и галектина-3 в зависимости от ИМТ

Показатель	Критерий	ИМТ		
Галектин-3	Спирмен p(rho)	0,067		
	df (степеней свободы)	73		
	р-значение	0,568		
ТФР-β	Спирмен p(rho)	-0,027		
	df (степеней свободы)	73		
	р-значение	0,819		
Примечание – значимость при *p<0,05				

По данным анализа, значимой корреляции между уровнем ТФР- β и длительностью первого пароксизма ФП не выявлено (r=0,258, p=0,168) (Таблица 15).

Таблица 15 — Корреляция показателей уровня ТФР- β в зависимости от длительности пароксизма ФП

Показатель	Критерий	Пароксизм менее 48 часов
Пароксизм более 48 часов	Спирмен ρ(rho)	0,258
	df (степеней свободы)	28
	р-значение	0,168
Примечание – значимо	сть при *p<0,05	

Также не выявлено значимых корреляций между уровнем ТФР β и клиническими исходами (r=0,269, p=0,123) (Таблица 16).

Таблица 16 – Корреляция показателей уровня ТФР-β в зависимости от клинических исходов

Показатель	Критерий	Есть клинические исходы			
Нет клинических	Спирмен p(rho)	0,269			
исходов					
	df (степеней свободы)	32			
	р–значение	0,123			
Примечание – значимость при *p<0,05					

Таким образом, у пациентов с ХНИЗ выявлены значимые корреляции между размером левого предсердия (ЛП) и конечным систолическим размером левого желудочка (КСР ЛЖ) (r=0,407, p=0,003), а также между размером левого желудочка и конечным диастолическим размером левого желудочка (r=0,363, p=0,010), и обратная корреляционная связь между КСР ЛЖ и ФВ ЛЖ (r= -0,693, p<0,001), и КДР ЛЖ и ФВ ЛЖ (r= -0,347, p<0,012). При анализе достоверности различий у пациентов с неблагоприятными клиническим исходами уровни ТФР- β были выше, чем у пациентов без клинически значимых исходов (U=7, p<0,049), а также выявлены достоверные различия между уровнем ТФР- β и длительностью пароксизма ФП (U=459, p=0,024*).

С целью оценки ассоциаций маркеров фиброза при фиброзе миокарда, было проведено экспериментальное моделирование фиброза миокарда у интактных крыс.

3.2. Пилотное исследование на крысах с индуцированным фиброзом

У крыс линии Wistar проводили измерения уровня САД мм рт.ст, уровней галектина 3 и ТФР-β и анализ морфометрических срезов миокарда как в контрольной группе (8 крыс), так и в экспериментальной (16 крыс). Измерения проводились ежемесячно в течение 6 месяцев.

Для определения достоверности связи между данными использовался критерий Уилкоксона, значения были достоверными при p<0,05. Медиана наблюдения составила 3,5 [3,1;4,2] месяцев.

По данным исследования, средний уровень САД достоверно отличался на 3 месяц наблюдения по сравнению с группой контроля (p<0,05) и на 6 месяц по сравнению с группой контроля (p<0,001) (Таблица 17).

Таблица 17 – Средний уровень САД, мм рт.ст. у крыс по месяцам

Объект	Контроль	САД 1	САД 2	САД 3	САД 4	САД 5	САД 6
исследова		месяц,	месяц,	месяц,	месяц,	месяц,	месяц,
ния		мм рт.ст	мм рт.ст	мм рт.ст	мм рт.ст	мм рт.ст	мм рт.ст
Крысы	128,00	167,00	178,00	152,00±4	173,00	181,00	161,00
линии	±5,13	±1,41	$\pm 5,\!66$,00*	$\pm 6,\!43$	±4,16	±3,06**
Wistar							

Примечание — значимость при *p < 0.05 по сравнению с точкой контроля, **p < 0.001 по сравнению с точкой контроля

Согласно данным, уровень ТФР- β у крыс контрольной группы статистически значимо отличается от уровня ТФР- β у крыс группы эксперимента (p<0,01), также как и по уровню галектина-3 в контрольной и экспериментальных группах (<0,05) (Таблица 18).

Таблица 18 – Показатели ТФР-β и галектина-3 у крыс линии Wistar

Показатель	Контроль (n=8)	Эксперимент (n=16)	p
		,	
Средний уровень ТФР-β, нг/мл	11,3±3,74	13,4±4,19	<0,01*
Средний уровень галектина-3, нг/мл	4,4[3,5;4,6]	3,7[3,7;5,7]	<0,05**
Примечание – значимость при *p<0,05			

Также было проведено морфологическое исследование миокарда крыс. Гистологические препараты для обзорного исследования изготовлялись по стандартной методике и окрашивались гематоксилином и эозином. Дополнительно, с целью визуализации соединительной ткани, препараты окрашивались по Ван-Гизону (Рисунок 8).

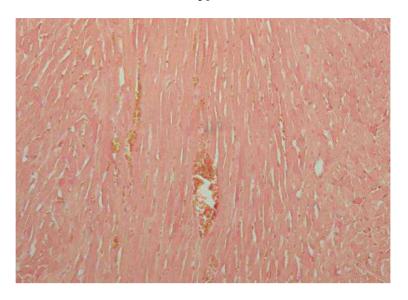


Рисунок 8 — Нормальный миокард левого предсердия. Полнокровие вен. Окраска по Ван-Гизону, ув. x200

На 2-й месяц от начала эксперимента у крыс из опытной группы наблюдалось разрастание тонких нежных соединительнотканных волокон преимущественно между гипертрофированными кардиомиоцитами (Рисунок 9).

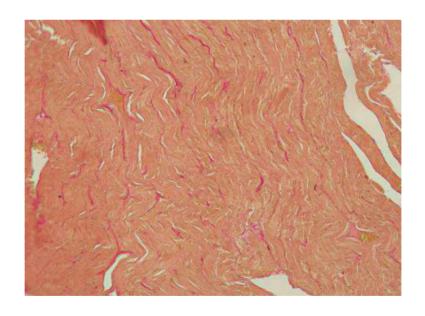
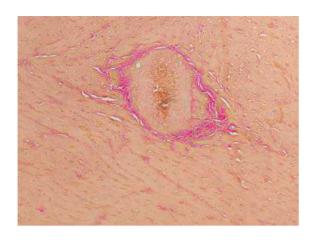



Рисунок 9 — Миокард левого предсердия крысы на 2-й месяц эксперимента. Полнокровие вен. Кардиомиоциты гипертрофированы, между ними прожилки соединительной ткани (розовый цвет). Окраска по Ван-Гизону, ув. х 200

На 4-й месяц у крыс опытной группы между значительно гипертрофированными кардиомиоцитами и вокруг сосудов наблюдались

выраженные прослойки вновь образованной соединительной ткани (Рисунок 10).

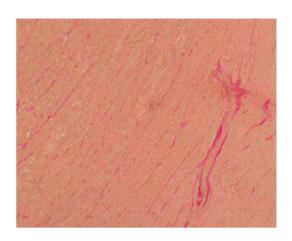


Рисунок 10 — Разрастание соединительной ткани периваскулярно и между кардиомиоцитами. 4-й месяц от начала эксперемента.

Окраска по Ван-Гизону, ув. х 200

На 6-й месяц у крыс опытной группы было обнаружено значительное разрастание соединительной ткани как периваскулярно, так и между гипертрофированными кардиомиоцитами с формированием картины «фиброза—оплетки» (Рисунок 11).

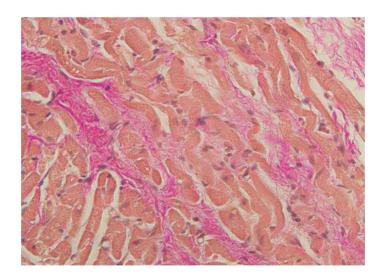


Рисунок 11— Формирование «фиброза-оплетки» вокруг гипертрофированных кардиомиоцитов в миокарде левого предсердия крыс на 6-й месяц с начала эксперимента. Окраска по Ван-Гизону, ув. х 400

Для проверки гипотезы о том, что уровень $T\Phi P$ - β зависит от размера кардиомиоцита ЛП и фиброза ЛП использовался корреляционный анализ Спирмена.

В ходе проведения анализа выявлена достоверная положительная корреляция между уровнем ТФР- β и размером кардиомиоцита (r=0,590, p= 0,004), между уровнем ТФР- β и фиброзом ЛП (r=0,627, p= 0,002), между размером кардиомиоцита ЛП и фиброзом миокарда ЛП (r=0,602, p= 0,002) (Таблица 19).

Таблица 19 – Корреляционная матрица показателей размеров кардиомиоцита ЛП,

фиброза миокарда ЛП и уровня ТФР-В

фиороза миокарда ли и ур	овил тът р		
Показатель	Критерий	Уровень ТФР-β	Размер кардиомиоцита
			ЛП
Размер кардиомиоцита ЛП	Спирмен p(rho)	0,590**	
	df (степеней	20	
	свободы)		
	р–значение	0,004	
Фиброз миокарда ЛП	Спирмен р(rho)	0,627**	0,602**
	df (степеней	20	22
	свободы)		
	р-значение	0,002	0,002
Примечание – значимость	при *p<0,05		

Для проверки гипотезы о том, что уровень галектина-3 зависит от размера кардиомиоцита ЛП и фиброза ЛП использовался корреляционный анализ Спирмена.

В ходе проведения анализа достоверной корреляции между уровнем галектина 3 и размером кардиомиоцита не получено (r=-0.164, p=0.465), между уровнем галектина-3 и фиброзом ЛП также не получено (r=0.234, p=0.295), (Таблица 20).

Таблица 20 — Корреляционная матрица показателей размера ЛП, фиброза ЛП,

vnовня галектина-3

уровня галектина-3			
Показатель	Критерий	Уровень	Размер
		галектина-3	кардиомиоцита ЛП
Размер	Пирсон r	-0,164	_
кардиомиоцита ЛП			
	df (степеней свободы)	20	_
	р–значение	0,465	
Фиброз ЛП	Пирсон r	0,234	0,602**
	df (степеней свободы)	20	22
	р-значение	0,295	0,002
Примечание – значи	мость при *p<0,05		

3.2.1. Анализ зависимости выраженности фиброза миокарда в зависимости от толщины кардиомиоцита ЛП

выраженности фиброза оценки В зависимости OT толщины кардиомиоцитов ЛП применялась многофакторная логистическая регрессии. Выраженность фиброза определялась полуколичественным методом последующей классификацией выраженности фиброза по стадиям. Модель была значимой $\chi^2(4)=14,1$, p=0,007.

Исходя из значений регрессионных коэффициентов, степень фиброза миокарда имеет прямую связь с толщиной кардиомиоцитов ЛП. Гипертрофия кардиомиоцитов увеличивает выраженность фиброза миокарда при слабо выраженном фиброзе в 13,43 раза (95% ДИ: 0,880-204,82), при умеренном фиброзе в 64,26 раз (95% ДИ: 0,880-204,82) по сравнению с группой без фиброза (Таблица 21).

Таблица 21 — Связь выраженности фиброза в зависимости от толщины кардиомиоцита

Выраженность фиброза	Предиктор	Bec	p	Отношение шансов	95% доверительный интервал	
					Нижняя	Верхняя
					граница	граница
1 – 0	Константа	-28,8342	0,075	3,00e-13	5,11e–27	17,63
	Уровень ТФР	0,0763	0,684	1,08	0,747	1,56
	Толщина	2,6	0,062*	13,43	0,880	204,82
	кардиомиоцита ЛП					
2 - 0	Константа	-51,6023	0,017	3,89e-23	1,31e-41	1,16e-4
	Уровень ТФР	0,2902	0,246	1,34	0,818	2,18
	Толщина кардиомиоцита ЛП	4,1630	0,017*	64,26	2,075	1990,41
Примечание – значимость при *p<0,05						

Для анализа вклада толщины кардиомиоцитов ЛП в выраженность фиброза миокарда, была построена линейная регрессионная модель. Толщина кардиомиоцита на 31,5% влияла на уровень фиброза миокарда. (Таблица 22).

Таблица 22 – Оценка вклада толщины кардиомиоцитов ЛП в степень фиброза ЛП

Предиктор	Коэффициент	R	R ²	F	p	Критерий Дурбина-Уотсона
	регрессии					дуроина-э отсона
Константа	-2,733			10,1		1,58
Толщина	0,285	0,561	0,315		0,004	
кардиомиоцитов						
ЛП						

Для определения значения размера кардиомиоцита ЛП, при котором регистрируются признаки фиброза ЛП, был использован ROC анализ. Площадь под ROC-кривой, которая соответствует взаимосвязи размера кардиомиоцита ЛП и фиброза ЛП, составила 0,739. Полученная модель была статистически значимой. Пороговое значение размера кардиомиоцита ЛП в точке cut-off равно 12,07 мкм.

При размере кардиомиоцита ЛП равном или превышающим 12,07 мкм прогнозировалось развитие фиброза ЛП. Чувствительность и специфичность метода составили 80% и 55,6% соответственно (Рисунок 12).

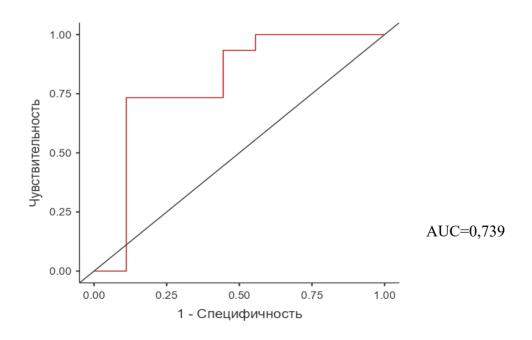


Рисунок 12— ROC-кривая зависимости фиброза миокарда ЛП от размера кардиомиоцита

3.2.2. Характеристика показателей обмена коллагена и связь их с размером левого предсердия и фиброзом левого предсердия

Для определения значения ТФР-β, при котором регистрируются признаки увеличения ЛП и признаки фиброза ЛП, был использован ROC-анализ.

Площадь под ROC-кривой, которая соответствует взаимосвязи уровня ТФРβ и размера кардиомиоцита ЛП, составила 0,842. Площадь под ROC-кривой, соответствующая взаимосвязи ТФР-β и фиброза ЛП, составила 0,868. Полученные модели были статистически значимы. Пороговое значение ТФР-β в точке cut—off при увеличении кардиомиоцитов ЛП равно 10,57 нг/мл. При ТФР-β равном или превышающим данное значение, прогнозировалось развитие гипертрофиии кардиомиоцитов ЛП. Чувствительность и специфичность метода составили 100% и 75% соответственно (Рисунок 13).

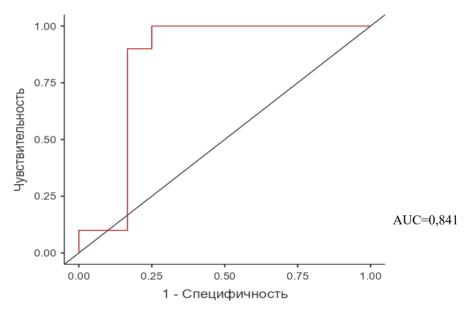


Рисунок 13 – ROC-кривая зависимости уровня ТФР β и размера кардиомиоцита ЛП

Пороговое значение ТФР-β в точке cut—off при фиброзе ЛП равно 13 нг/мл. При ТФР-β равном или превышающим данное значение, прогнозировалось развитие фиброза ЛП. Чувствительность и специфичность метода составили 76,92% и 88,89% соответственно (Рисунок 14).

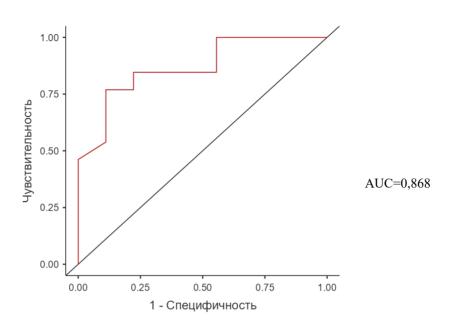


Рисунок 14 – ROC-кривая зависимости уровня ТФР-β и фиброза ЛП

Таким образом, гипертрофия кардиомиоцитов увеличивает выраженность фиброза миокарда при слабо выраженном фиброзе в 13,43 раза (95% ДИ: 0,880-204,82), при умеренном фиброзе в 64,26 раз (95% ДИ: 0,880-204,82) по сравнению с группой без фиброза.

Уровень фиброза миокарда на 31,5% зависел от толщины кардиомиоцитов ЛП. При размере кардиомиоцита ЛП равном или превышающим 12,07 мкм, прогнозировалось развитие фиброза ЛП.

Значение ТФР- β при увеличении кардиомиоцитов ЛП равно 10,57 нг/мл. При значении равном или превышающим 10,57 нг/мл, прогнозировалось развитие гипертрофиии кардиомиоцитов ЛП в эксперименте.

При ТФР- β равном или превышающим 13 нг/мл, прогнозировалось развитие фиброза ЛП в эксперименте.

3.3. Основные клинико-демографические характеристики пациентов с впервые выявленной фибрилляцией предсердий

В исследование было включено 143 пациента 54,5% (78) мужчин и 45,5% (65) женщин. Средний возраст пациентов с впервые выявленной $\Phi\Pi$, участвовавших в исследовании составил 67,0 [59,5;74,0] лет.

На момент включения в исследование оценивался ИМТ и уровень АД. Медиана ИМТ составила 30,0 [26,8;33,0] кг/м². Средний уровень систолического артериального давления (САД) 140 [130;150] мм.рт.ст, средний уровень диастолического артериального давления (ДАД) 80 [78;88] мм.рт.ст. Средний уровень АД при включении в исследование у пациентов был неоптимальным (Таблица 23).

Таблица 23 – Характеристика когорты пациентов при включении в исследование

Показатели	Пациенты
Возраст, лет	67[59,5;74]
Пол	M:Ж=54,5%(78):45,5 %(65)
Рост, см	170[164;176]
Вес, кг	88[78;98]
ИМТ, кг \setminus м ²	30[26,7;33]
Средний уровень САД, мм рт.ст.	140[130;150]
Средний уровень ДАД, мм рт.ст.	80[78;88]

Таблица 24 – Анамнез и сопутствующие заболевания, п (%)

Показатель	Значение, n(%)
Курение	31 (21,7%)
Злоупотребление алкоголем	18 (12,6%)
Ожирение	60 (42%)
Артериальная гипертензия	106 (74,1%)
Ишемическая болезнь сердца	34 (23,8%)
Сахарный диабет 2 типа	17 (11,9%)
Заболевания щитовидной железы	2 (1,4%)
Синдром обструктивного апное	0 (0%)
Гемодинамически значимые пороки сердца	16 (11,2%)
Исходно высокая ЧСС	17 (11,9%)

Выраженные клинические симптомы были у 43,4%, минимальные у 53,8 %, у 2,8 % участников исследования $\Phi\Pi$ носила бессимптомный характер (Таблица 25).

Таблица 25 – Оценка выраженности симптомов по шкале EHRA

Класс EHRA	Значения, п(%)
I	7 (4,9%)
IIa	52 (36,3%)
IIб	25 (17,5%)
III	11 (7,7%)
IV	48 (33,6%)

По данным эхокардиографии выявлено увеличение размеров ЛП 4,5 [4;4,75] см, остальные показатели были в пределах нормы (Таблица 26).

Таблица 26 – Основные эхокардиографические характеристики ЛЖ

Показатель	Значение
КДР ЛЖ, см	5,40 [5;5,8]
КСР ЛЖ,см	3,6 [3,3;4]
ФВ по Симпсону,%	62 [58;64]
Среднее значение размера ЛП, см	4,5 [4;4,75]

Во время госпитализации пациентам проводилась попытка восстановления ритма. Электрическая кардиоверсия проводилась 28 (19,6%) пациентов, медикаментозная кардиоверсия 108 (75,5%) пациентов, спонтанная кардиоверсия зарегистрирована у 7 (4,9%) пациентов (Таблица 27).

Таблица 27 – Характеристика методов восстановления ритма

Вид	Значение, n(%)
Электрическая кардиоверсия, n (%)	28 (19,6%)
Медикаментозная кардиоверсия, п (%)	108 (75,5%)
Спонтанная кардиоверсия, п (%)	7 (4,9%)

Оценка риска инсульта в популяции пациентов показала, что 5,6% пациентов имели низкий риск (0-1 балла), 16,1% пациентов — два балла, 78,3% пациентов 3 и более баллов. Риск кровотечений, оценивался по шкале HAS—BLED на момент госпитализации. 77,6% пациентов имели низкий риск кровотечений (менее 3 баллов), 22,4% пациентов имели высокий риск кровотечений (Таблица 28).

Таблица 28 – Характеристика пациентов по риску развития инсульта и кровотечений

Характеристика	Значение	
Риск кровотечений по	о шкале HAS–BLED	
HAS-BLED, средний балл,ст откл	1,62(0,875)	
низкий риск(<3)	111(77,6%)	
высокий риск(>3)	32 (22,4%)	
Риск инсульта С	HA2DS2-VASc	
CHA2DS2–VASc, средний балл,ст откл	1,98(1,22)	
Низкий риск	8(5,6%)	
Умеренный риск	23(16,1%)	
Высокий риск	112(78,3%)	

Согласно полученным данным, 6,4% пациентов, включенных в исследование, при выписке из стационара получали с целью профилактики кардиоэмболического инсульта антагонисты витамина К, 4,9% пациентов получали для профилактики инсульта ацетилсалициловую кислоту (Таблица 29).

Таблица 29 – Медикаментозная терапия

Значение, п(%)
124 (86,7%)
101 (70,6%)
99 (69,2%)
81 (56,6%)
8 (9,9%)
18 (22,2%)
52 (64,2%)
3 (3,7%)
7 (4,9%)
64 (44,8%)
124 (86,7%)
31 (25%)
6 (4,8%)
79 (63,7%)
8 (6,4%)

Новые оральные антикоагулянты получали 86,7% пациентов. Не получали никакой антитромботической терапии 6,9% оцениваемой когорты (Таблица 29).

По данным анализа (Критерий Манна-Уитни) выявлены достоверные различия между группой пациентов, принимавших антикоагулянтную терапию и клиническими исходами (p<0,001), а также между высоким риском тромбоэмболических осложнений и клиническими исходами (p<0,001) (Таблица 30).

Таблица 30 — Оценка достоверности различий между группами пациентов с неблагоприятными клиническими исходами в зависимости от назначения антикоагулянтной терапии и при высоком риске тромботических осложнений

Показатель	n	Критерий	p
Антикоагулянты	124	Манна-Уитни U	<0,001
Высокий риск инсульта по шкале CHA2DS2–VASc	112	Манна-Уитни U	<0,001
Примечание – значимость при *p<0,05			

Для определения достоверности различий между характером восстановления ритма и клиническими исходами использовался тест Манна-Уитни для независимых выборок. По данным анализа, выявлены достоверные различия между клиническими исходами: показателями сердечно—сосудистых событий (p=0,024), госпитализациями (p<0,001), КАГ(p=0,009), РЧА(p=0,032), смертью (p=0,026) (Таблица 31).

Таблица 31 — Анализ достоверности показателей восстановления ритма и значимых клинических исходов

Показатель	n	Критерий	р
Сердечно-сосудистые события	2	Манна-Уитни U	0,024
Госпитализации	33	Манна-Уитни U	<0,001
КАГ	5	Манна-Уитни U	0,009
РЧА	6	Манна-Уитни U	0,032
Смерть	8	Манна-Уитни U	0,026
Примечание – значимость при *р	<0,05		

По данным корреляционного анализа выявлены значимые корреляции группой пациентов, принимавших между антикоагулянтную терапию, (p<0.001),клиническими исходами a также между высоким риском тромбоэмболических осложнений и клиническими исходами (p<0,001) (Таблица 32).

Таблица 32 – Корреляционная матрица показателей риска инсульта, назначения антикоагулянтной терапии и клинических исходов

Показатель	Критерий	Клинические исходы		
Антикоагулянты	Спирмен p(rho)	0,298		
	df (степеней свободы)	140		
	р–значение	<0,001***		
Высокий риск инсульта по шкале CHA2DS2–VASc	Спирмен p(rho)	0,405		
	df (степеней свободы)	140		
р–значение <0,001*				
Примечание – значимость при	*p<0,05			

При анализе конечных точек выявлено, что у пациентов с сохраняющейся $\Phi\Pi$ чаще наблюдались такие исходы, как смерть (4,2%), проведение радиочастотной аблации (2,8%), коронароангиография (2,8%), инсульт (0,7%) и

инфаркт миокарда (0,7%) по сравнению с пациентами с правильным ритмом, при этом, по всем показателям клинических исходов наблюдались значимые корреляции (p<0,001) (Таблица 33, Рисунок 15).

Таблица 33 – Корреляционная матрица клинических исходов и характеристики

ритма					-	
Показатель	Критерий	Госпитализации	Инсульт и	КАГ при	РЧА при	Смерть при
		при синусовом	ИМ при	синусовом	синусовом	синусовом
		ритм (n=15)	синусовом	ритме (n=1)	ритме (n=2)	ритме (n=2)
			ритме (n=0)			
Госпитализаци	Спирмен	0,902*				
и при ФП	ρ(rho)					
(n=18)						
	df (степеней	140				
	свободы)					
	р–значение	< 0,001				
Инсульт и ИМ	Спирмен		1,000*			
при ФП (n=1)	ρ(rho)					
	df (степеней		140			
	свободы)					
	р-значение		<0,001			
КАГ при ФП	Спирмен			0,495*		
(n=4)	ρ(rho)					
	df (степеней			140		
	свободы)					
	р-значение			< 0,001		
РЧА при ФП	Спирмен				0,814*	
(n=4)	ρ(rho)					
	df (степеней				140	
	свободы)					
	р-значение				<0,001	
Смерть при ФП						0,569*
(n=6)	ρ(rho)					
	df (степеней					140
	свободы)					0.001
	р–значение					<0,001
Примечани	е – значимос	ть при *p<0,05				

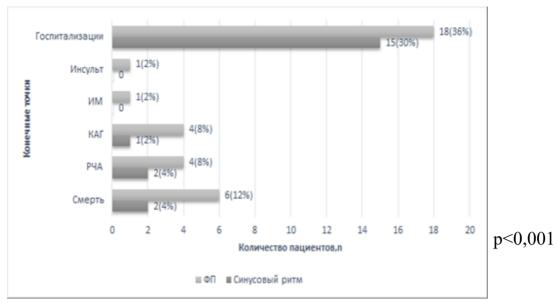


Рисунок 15 — Анализ зависимости конечных точек с характеристикой ритма Примечание — значимость при *p<0,05

Определение влияния выраженности симптомов ФП на характеристику восстановления ритма у пациентов с впервые выявленной ФП оценивалась с помощью бинарной логистической регрессии. Модель была значимой $\chi^2(4)=9,77$, р=0,045. По обеим категориям исходов (синусовый ритм и фибрилляция предсердий) 72,7% случаев были точно классифицированы, специфичность (100%) превышала чувствительность (97,1%). Исходя из значений регрессионных коэффициентов, выраженность клинических симптомов имеет прямую связь с характеристикой восстановления ритма. Чем выраженнее клиническая сиптоматика, тем выше риск фибрилляции предсердий. При сравнении клиники І класса EHRA с IIa (p=0,244) и IIб (p=0,321) достоверных различий не выявлено. Выраженность симптомов III класса ЕНRA по сравнению с I приводит к достоверному увеличению риска фибрилляции предсердий в 13,3 раз (95% ДИ: 1,49-169,50). Выраженность симптомов IV класса EHRA, по сравнению с I, приводит к достоверному увеличению риска фибрилляции предсердий в 6,5 раз (95% ДИ: 1,212-34,85) (Таблица 34).

Таблица 34 – Оценка влияния выраженности симптомов ФП на восстановление

ритма

Предиктор	Bec	р	Отношение	Нижняя	Верхняя
			шансов	граница	граница
Константа	-0,288	0,706	0,750	0,168	3,35
		Балл по	шкале EHRA:		
IIa – I	0,953	0,244	2,593	0,523	12,86
II6 – I	0,863	0,321	2,370	0,431	13,04
III – I	2,590	0,046*	13,333	1,049	169,50
IV – I	1,872	0,029*	6,500	1,212	34,85
Примечание – значимость при *p<0,05					

Определение влияния характеристики восстановления ритма на клинические исходы у пациентов с впервые выявленной ФП оценивалась с помощью бинарной логистической регрессии. Модель была значимой $\chi^2(1)=6,68$, p=0,010. По обеим категориям исходов (наличие и отсутствие клинических исходов) 3,5% случаев были точно классифицированы, специфичность (6,26%) превышала чувствительность (4,6%). Исходя из значений регрессионных коэффициентов, наличие клинических исходов, имеет прямую связь с характеристикой восстановления ритма (Таблица 35).

Таблица 35 – Оценка влияния ритма на развитие клинических исходов

Предиктор	Bec	p	Отношение	95% ДИ	
			шансов	Верхняя	Нижняя
				граница	граница
Константа	-0,201	0,528	0,818	0,439	1,53
Характеристика восстановления ритма					
Синусовый ритм–ФП	0,983	0,010*	2,674	1,263	5,56
Примечание – значимость при *p<0,05					

Для определения влияния назначенной антикоагулянтной терапии на

клинические исходы у пациентов с впервые выявленной $\Phi\Pi$ использовалась бинарная логистическая регрессия. Модель была значимой $\chi^2(1)=18,8$, p<0,001.

По обеим категориям исходов (наличие и отсутствие клинических исходов) 9,97% случаев были точно классифицированы, специфичность (12,4%) превышала чувствительность (16,9%). Исходя из значений регрессионных коэффициентов, назначение антикоагулянтной терапии, имеет прямую, но не значимую связь с клиническими исходами (p=0,985) (Таблица 36).

Таблица 36 – Оценка влияния назначенной антикоагулянтной терапии на

nasrutue	клинических	ИСХОПОВ
Dasbrine	KJIVIIIVI-ICCKVIA	ислодов

Предиктор	Bec	p
Константа	0,260	0,152
Антикоагулянтная терапия	17,307	0,985

Для определение влияния высокого риска инсульта по шкале CHA2DS2–VASc на клинические исходы у пациентов с впервые выявленной ФП использовалась бинарная логистическая регрессия. Модель была значимой $\chi^2(1) = 33,5$, p<0,001. По обеим категориям исходов (наличие и отсутствие клинических исходов) 17,8% случаев были точно классифицированы, специфичность (21%) превышала чувствительность (28,6%) (Таблица 37).

Таблица 37 – Оценка влияния высокого риска инсульта по шкале CHA2DS2–VASc на риск развития клинических исходов

Предиктор	Bec	p
Константа	0,0715	0,706
Высокий риск инсульта по шкале CHA2DS2–VASc	18,4946	0,988

Исходя из значений регрессионных коэффициентов, высокий риск по шкале CHA2DS2–VASc имеет прямую, но не значимую связь с клиническими исходами (p=0,152) (Таблица 37).

3.4. Клинико-демографическая характеристика когорты пациентов с впервые зарегистрированной фибрилляцией предсердий без тяжелых хронических неинфекционных заболеваний

В исследование включили 50 пациентов в возрасте $64,2\pm10,0$ лет. Большинство пациентов было старше 60 лет (62%). Из 50 пациентов 40% женщин, n=20 и 60% мужчин n=30. По данным исследования, пациенты были с избыточной массой тела 11 (22%), ожирение регистрировалось у 18 (36%) пациентов (Таблица 38).

Таблица 38 – Основные характеристики изучаемых пациентов

Показатели	Пациенты
Возраст, лет	64,2±10
Пол	M:Ж=60%(30):40%(20)
Рост, см	$171 \mp 7,77$
Вес, кг	82,5 [76,3;96,8]
ИМТ, кг/м ²	$29,5 \mp 5,32$

Большинство пациентов было в возрасте 61-80 лет (62%) (Рисунок 16).

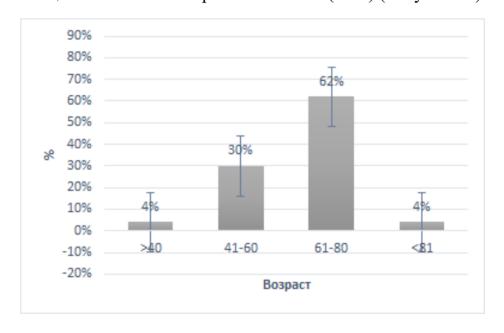


Рисунок 16 — Распределение пациентов с ФП без значимых ССЗ по возрасту Примечание — значимость при *p<0,05

Из факторов риска фибрилляции предсердий чаще всего выявлялись: артериальная гипертензия 42 (84%), курение 23 (46%), ожирение 38 (76%),

избыточная масса тела 8 (16%), употребление алкоголя 7 (14%), заболевания щитовидной железы 3 (6%), гемодинамически значимые пороки сердца 3 (6%), исходно высокая частота сердечных сокращений 4 (8%) (Таблица 39).

Таблица 39 – Факторы риска

Фактор риска	Показатель, п (%)
Курение	23 (46%)
Злоупотребление алкоголем	7 (14%)
Ожирение	38 (76%)
Избыточная масса тела	8 (16%)
Артериальная гипертензия	42 (84%)
Заболевания щитовидной железы	3 (6%)
Пороки сердца	3 (6%)
Исходно высокая ЧСС	4 (8%)

Согласно данным, средний уровень САД был на уровне $133\pm14,9$ мм рт.ст, средний уровень ДАД 80 [120;142] мм рт.ст. (Таблица 40).

Таблица 40 – Характеристика работы сердечно-сосудистой системы

Показатели	Пациенты
Средний уровень САД, мм рт.ст	133±14,9
Средний уровень ДАД, мм рт.ст	80 [120;142]

При анализе основных эхокардиографических показателей выявлено достоверное увеличение размеров ЛП $4,34\pm0,49$ см, показатели КДР ЛЖ 4,7 [3,58;5,4] см, КСР ЛЖ 3,5 [3,2;3,83] см, ФВ 62 [60;65]% были в пределах нормы (Таблица 41).

Таблица 41 – Основные эхокардиографические характеристики ЛП

Показатель	Значение
КДР ЛЖ, см	4,7 [3,58;5,4]
КСР ЛЖ, см	3,5 [3,2;3,83]
ФВ по Симпсону,%	62 [60;65]
Среднее значение размера ЛП, см	4,34±0,494

При исследовании уровня маркеров фиброза миокарда у пациентов с впервые выявленной ФП, определено, что средний уровень ТФР-β был на уровне 7,03 [5,62; 8,58] нг/мл, галектина 3 на уровне 33,9 [25,1; 47] нг/мл (Таблица 42).

Таблица 42 – Средний уровень маркеров фиброза миокарда

Показатель	Значение, нг/мл
Средний уровень трансформирующего фактора роста в	7,03 [5,62; 8,58]
Средний уровень галектина-3	33,9 [25,1; 47]

По данным исследования, у пациентов проводилась медикаментозная кардиоверсия 38 (76%), электрическая кардиоверсия у 7(14%), спонтанное восстановление ритма произошло у 5 (10%) пациентов (Таблица 43).

Таблица 43 – Характеристика методов восстановления ритма

Вид	Значение п (%)
Электрическая кардиоверсия	7 (14%)
Медикаментозная кардиоверсия	38 (76%)
Спонтанная кардиоверсия	5 (10%)

При оценке клинических симптомов у пациентов с впервые выявленной фибрилляцией предсердий выявлено, что наиболее часто пациенты испытывали умеренные 24 (48%) (Класс EHRAII6) и выраженные 20 (40%) (Класс EHRAIII) симптомы заболевания (Рисунок 17).

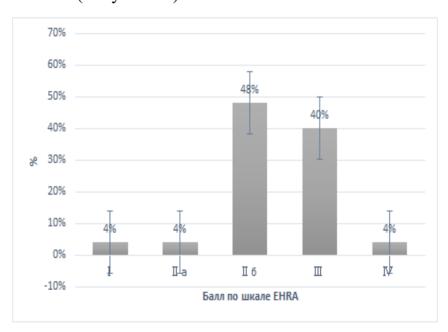


Рисунок 17 — Оценка выраженности симптомов по шкале EHRA Примечание — значимость при *p<0,05

При оценке риска инсульта выявлено, что средний балл по шкале

СНА2DS2–VASc был 1,92, большинство пациентов было с высоким риском развития инсульта 27 (54%). При оценке риска кровотечений по шкале HAS–BLED средний балл был 1,58 (0,785), при этом большинство пациентов были с низким риском кровотечений 45 (90%) (Таблица 44).

Таблица 44 – Оценка риска кровотечений по шкале HAS–BLED и риска инсульта по шкале CHA2DS2–VASc

Характеристика	Значение, п (%)	
Риск кровотечений		
HAS-BLED, средний балл,ст откл	1,58 (0,785)	
низкий риск(<3)	45 (90%)	
высокий риск(>3)	5 (10%)	
Риск инсульта		
CHA2DS2–VASc, средний балл, ст откл	1,92 (1,19)	
Низкий риск	3 (6%)	
Умеренный риск	20 (40%)	
Высокий риск	27 (54%)	

Из медикаментозной терапии пациентам назначались ингибиторы АПФ 42 (84%), β-адреноблокаторы 28 (56%), препараты группы статинов 31 (62%), антиаритмические препараты 31 (62%), диуретики 18 (36%), антиагреганты не назначались. Антикоагулянты назначались 43 (86%). Наиболее часто назначались новые оральные антикоагулянты (Таблица 45).

Таблица 45 – Медикаментозная терапия

Препарат	Значение, п(%)
иАПФ	42 (84%)
β-адреноблокаторы	28 (56%)
Статины	31 (62%)
Антиаритмические препараты	31 (62%)
Пропафенон	6 (19,4%)
Сотагексал	17 (54,8%)
Аллапинин	8 (25,8%)
Амиодарон	0 (0%)
Антиагреганты	0 (0%)
Диуретики	18 (36%)
Антикоагулянты	43 (86%)
Виды антикоагулянтов	

	Продолжение Таблицы 45
Апиксабан	11(25,6%)
Дабигатран	5 (11,6 %)
Ривароксабан	24 (55,8%)
Варфарин	1 (2,3%)

Клиническими исходами исследования являлись: сердечно—сосудистые события, а именно, инфаркт 1 (2%), инсульт 1 (2%), а также госпитализации по поводу нарушения ритма 3 (6%), процедуры коронароангиографии 5 (10%), радиочастотной аблации 5 (10%) и смерть 0% (Таблица 46).

Таблица 46 – Клинически значимые исходы

Исход	Значение п (%)
Радиочастотная аблация (РЧА)	5 (10%)
Коронароангиография	5 (10%)
Сердечно—сосудистые события (нефатальный инфаркт	1 (2%)
миокарда)	
Сердечно—сосудистые события (нефатальный	1 (2%)
инсульт)	
Смерть	0 (0%)
Госпитализации по СС причине	3 (6%)

При проверке гипотезы о том, что размер ЛП у пациентов с повышенным САД выше, чем у пациентов с нормальным САД (Критерий Манна-Уитни), были получены достоверные различия между группами пациентов с увеличенным размером ЛП с повышенным САД и с нормальным САД (p<0,014) (Таблица 47).

Таблица 47 — Оценка достоверности различий между размером ЛП при нормальном и повышенном уровне АД

	Группа	N	Среднее	Медиана	U, p
Размер левого предсердия	Нормальное САД	31	4,21	4,10	U=150 p=0,014*
	Повышенное САД	16	4,58	4,54	p-0,014
Примечание – значимость при *p<0,05					

При анализе достоверности различий уровня ТФР-β и галектина-3 между группами пациентов с повышенным и нормальным уровнем артериального давления (Критерий Манна-Уитни). Достоверных различий в группах не

выявлено (р=0,374, р=0,266) (Таблица 48).

Таблица 48 — Анализ зависимости маркеров миокардиального фиброза от уровня САЛ

	Группа	N	Среднее	Медиана	Критерий Манна- Уитни U, р
Трансформирующий фактор роста β	низкое САД	34	7,68	6,83	U=256 p=0,374
	повышенное САД	16	7,38	7,69	
Галектин-3	низкое САД	37,09	37,09	33,89	U=242
	повышенное САД	40,59	40,59	35,29	p=0,266

Уровень ТФР- β при нормальной массе тела составил 6,78 [6,48;8,38] нг/мл, при ожирении 1 степени 7,32 [5,82;8,02] нг/мл, при ожирении 2 степени 6,85 [6,12;9,43] нг/мл, при ожирении 3 степени 6,48 [5,14;8,45] нг/мл.

Уровень галектина-3 при нормальной массе тела составил $23,7\pm5,99$ нг/мл, при ожирении 1 степени $33,3\pm10,4$ нг/мл, при ожирении 2 степени $51,7\pm10,7$ нг/мл, при ожирении 3 степени $63,2\pm23,6$ нг/мл (Таблица 49).

Таблица 49 – Показатели уровня миокардиального фиброза в зависимости от степени ожирения

Показатель	нормальная масса тела (n=12)	ожирение 1 (n=22)	ожирение 2 (n=8)	ожирение 3 (n=8)
ТФР-β, нг/мл	6,78 [6,48;8,38]	7,32 [5,82;8,02]	6,85 [6,12;9,43]	6,48 [5,14;8,45]
Галектин-3, нг/мл	23,7±5,99	33,3±10,4	51,7±10,7	$63,2\pm23,6$

При проверке гипотезы об повышенном уровне галектина-3 у пациентов с ожирением был применен анализ достоверности различий Т-критерий для парных выборок (Критерий Уилкоксона W). Были получены значимые различия между уровнем галектина-3 и степенью ожирения. Так, у пациентов с ожирением 1 степени уровень галектина-3 был статистически значимо выше, чем у пациентов с ожирением 2 степени (p=0,039), а уровень галектина в группе со 2 степенью ожирения был достоверно выше уровня галектина-3 в группе с 3 степенью ожирения (p=0,031), в группе со 1 и 3 степенью ожирения уровень галектина-3 значимо не различался (p=0,469) (Таблица 50).

Таблица 50 — Оценка достоверности различий уровня галектина-3 в зависимости от степени ожирения

Сравниваемые	Степень ожирения	Критерий	n	p	
группы					
ожирение 1 степени	ожирение 2 степени	Уилкоксона W	5	0,039*	
ожирение 2 степени	ожирение 3 степени	Уилкоксона W	9	0,031*	
ожирение 3 степени	ожирение 1 степени	Уилкоксона W	1	0,469	
Примечание – значимость при *p<0,05					

При проверке гипотезы о повышенном уровне ТФР-β у пациентов с ожирением был применен анализ достоверности различий (Критерий Уилкоксона). Достоверных различий в группах обнаружено не было (Таблица 51).

Таблица 51 — Оценка достоверности различий уровня $T\Phi P$ - β в зависимости от степени ожирения

Сравниваемые	Степень ожирения	Критерий	n	p	
группы					
ожирение 1 степени	ожирение 2 степени	Уилкоксона W	13	0,547	
ожирение 1 степени	ожирение 3 степени	Уилкоксона W	19	0,945	
ожирение 2 степени	ожирение 3 степени	Уилкоксона W	20	0,844	
Примечание – значимость при *p<0,05					

У пациентов с синусовым ритмом уровень ТФР- β был на уровне 5,05 [4,37;5,57] нг/мл, а уровень ТФР- β у пациентов с фибрилляцией предсердий 7,71 [7,01;9,73] нг/мл.

Уровень молекулярного галектина-3 был незначительно выше в группе пациентов с фибрилляцией предсердий 34 [25,3;42,3] нг/мл, по сравнению с пациентами с синусовым ритмом 33,9 [24,9;57,4] нг/мл.

При проверке гипотезы о повышенном уровне ТФР-β и галектина-3 у пациентов в зависимости от восстановления ритма, был применен анализ достоверности различий (Критерий Манна-Уитни).

Были получены значимые различия между уровнем ТФР- β и восстановлением ритма. Так, у пациентов в группе с фибрилляцией предсердий, уровень ТФР- β был достоверно выше, чем у пациентов с синусовым ритмом (p<0,01).

Однако, значимых различий между уровнем галектина-3 в группах при

восстановленном и не восстановленном ритме не было (Таблица 52).

Таблица 52 — Оценка достоверности различий уровня ТФР-β и галектина 3 между группами в зависимости от восстановления ритма

	Группа	n	Среднее	Медиана	Критерий Манна-		
					Уитни U, р		
Трансформирующий	синусовый ритм	16	5,10	5,05	U= 10		
фактор роста в,	фибрилляция	34	8,76	7,71	p<0,01*		
нг/мл	предсердий				-		
Галектин-3,нг/мл	синусовый ритм	16	42,1	33,9	U= 233		
	фибрилляция	34	36,4	34	p=0,423		
	предсердий						
Примечание – значи	Примечание – значимость при *p<0,05						

При анализе данных о том, что уровень ТФР- β и галектина-3 выше у пациентов с пароксизмом ФП более 48 часов, был проведен анализ достоверности различий (Критерий Манна-Уитни). По данным анализа, значимых различий в группах по ТФР- β и по галектину-3 не выявлено (p=0,187, p=0,711) (Таблица 53).

Таблица 53 — Оценка достоверности различий в группах маркеров миокардиального фиброза и длительности пароксизма ФП

	Группа	n	Среднее	Медиана	Критерий Манна-
					Уитни U, р
Трансформирующий	менее 48 часов	22	7,45	6,62	U= 262
фактор роста в,	более 48 часов	28	7,70	7,46	p=0,187
нг/мл					
Галектин-3,нг/мл	менее 48 часов	22	39,87	33,	U= 280
	более 48 часов	28	36,91	37,79	p=0,711

Для проверки гипотезы о повышенном уровне ТФР- β и галектина-3 у пациентов в зависимости от количества госпитализаций был применен анализ достоверности различий в группах (Критерий Манна-Уитни). Были получены значимые различия между уровнем ТФР- β и количеством госпитализаций. Так, у пациентов в группе с 1 и более госпитализациями уровень ТФР- β был достоверно выше, чем у пациентов с отсутствием госпитализаций (p<0,01). Различий уровня галектина-3 в группах с 1 и более госпитализациями и без госпитализации не

было (р=0,915) (Таблица 54).

Таблица 54 — Оценка достоверности различий уровня ТФР-β между группами в зависимости от количества госпитализаций

	Группа	n	Среднее	Медиана	Критерий Манна-
					Уитни U, р
Трансформирующий	0 госпитализаций	17	5,17	5,11	U=5
фактор роста β,нг/мл	1 и более	33	8,83	7,83	p<0,001*
	госпитализацией				
Галектин-3, нг/мл	0 госпитализаций	17	43,4	37,4	U=214
	1 и более	33	35,6	32,9	p=0,915
	госпитализацией				
Примечание – значимость при *p<0,05					

Анализ достоверности различий между уровнем маркеров фиброза миокарда и значимыми клиническими исходами (Критерий Манна-Уитни) выявил достоверные различия между уровнем маркеров $T\Phi P$ - β и клиническими исходами. Так, у пациентов с неблагоприятными клиническим исходами уровни $T\Phi P$ - β были выше, чем у пациентов без клинически значимых исходов (U=15, p<0,01). При этом достоверных различий по уровню галектина-3 между группами с неблагоприятными клиническими исходами и без неблагоприятных исходов не было (U=230, p=0,758) (Таблица 55).

Таблица 55 — Анализ достоверности показателей уровней маркеров фиброза миокарда и значимых клинических исходов

	Группа	n	Среднее	Медиана	Критерий Манна-
					Уитни U, р
Трансформирующий	неблагоприятных	15	5,15	5	U=15
фактор роста β, нг/мл	исходов нет				p<0,01*
	неблагоприятные	35	8,63	7,6	
	исходы есть				
Галектин-3,нг/мл	неблагоприятных	15	41,09	34,48	U=230
	исходов нет				p=0,758
	неблагоприятные	35	36,98	32,85	
	исходы есть				
Примечание – значимость при *p<0,05					

По данным анализа (Критерий Манна-Уитни) не выявлено достоверных

различий между группой пациентов с высоким риском тромбоэмболических осложнений и клиническими исходами (p=0,061).

Однако, выявлены достоверные различия в группе принимающей антикоагулянтную терапию и клиническими исходами (p=0,027) (Таблица 56).

Таблица 56 — Оценка достоверности различий между группами пациентов с неблагоприятными клиническими исходами в зависимости от назначения антикоагулянтной терапии и при высоком риске тромботических осложнений

Показатель	Критерий	p		
Антикоагулянты	Манна-Уитни U	0,027*		
Высокий риск инсульта по шкале CHA2DS2–VASc	Манна-Уитни U	0,061		
Примечание – значимость при *p<0,05				

При проверке гипотезы о том, что уровень ТФР- β и галектина-3 увеличивается в зависимости от размера ЛП, был проведен корреляционный анализ Спирмена. В результате была полученная положительная корреляция между уровнем ТФР β при нормальном размере ЛП и при увеличенном ЛП (r=0,636, p=0,040).

Уровень галектина при нормальном размере ЛП и при повышенном уровне галектина-3 не показал значимой корреляционной связи (r=-0.173, p=0.614) (Таблица 57).

Таблица 57 – Зависимость показателей миокардиального фиброза от размера ЛП

Показатель	Увеличение ЛП (n=36)	Нормальные размеры ЛП (n=11)	Корреляция			
ТФР-β,нг/мл	6,98 [5,55;8,42]	7,06 [6,54;9,46]	Спирмен p(rho)=0,636* df=9 p= 0,040			
Галектин-3,нг/мл	34,8 [25,1;50,2]	26,7 [24,8;40,1]	Спирмен p(rho)= - 0,173 df=9 p= 0,614			
Примечание – зна	Примечание – значимость при *p<0,05					

При проверке гипотезы о том, что у пациентов с фибрилляцией предсердий меняется уровень показателей эхокардиографии, был проведен корреляционный

анализ Спирмена.

В результате была получена значимая положительная корреляция (Таблица 58) между размером левого предсердия (ЛП) и конечным систолическим размером левого желудочка (КСР ЛЖ) (r=0,414,p=0,004), а также между конечным диастолическим размером левого желудочка и конечным диастолическим размером левого желудочка (r=0,452, p=0,001).

Таблица 58 — Корреляционная матрица зависимостей показателей эхокардиографии

Показатель	Критерий	ЛП	ΦВ	КДР			
ΦВ	Спирмен p(rho)	-0,496***					
	df (степеней свободы)	44					
	р-значение	<0,001					
КДР	Спирмен p(rho)	0,098	-0,113				
	df (степеней свободы)	45	44				
	р-значение	0,512	0,454				
КСР	Спирмен р(rho)	0,413**	-0,232	0,452*			
	df (степеней свободы)	45	44	45			
	р-значение	0,004	0,121	0,001			
Примечание – зн	Примечание – значимость при *p<0,05						

Однако, была обнаружена и обратная корреляционная связь между размером ЛП и Φ В ЛЖ (r= -0.496, p<0.001) (Таблица 58).

В ходе проверки гипотезы о том, что у пациентов с ожирением выше уровень маркеров фиброза миокарда был проведен корреляционный анализ Спирмена. В результате была получена значимая положительная корреляция. Так, уровень галектина 3 положительно связан с показателем ИМТ>30кг/см2 (r=0,773, p<0,001), а уровень $T\Phi P$ - β значимо не коррелировал с ИМТ (r= -0,083, p=556).

Исходя из полученных данных, можно сделать вывод, что пациенты с ожирением имеют более высокий уровень галектина-3 (Таблица 59).

Таблица 59 — Корреляционная матрица показателей ИМТ и уровней маркеров фиброза миокарда

	Критерий	Галектин-3	ТФР-β			
ИМТ	Спирмен ρ(rho)	0,773*	-0,030			
	df (степеней свободы)	48	48			
	р-значение	<0,001	0,836			
Примеча	Примечание – значимость при *p<0,05					

В ходе проведения корреляционного анализа Спирмена выявлена достоверная положительная корреляция между уровнем ТФР- β и характеристикой восстановления ритма (r=0,578, p= 0,019*) (Таблица 60).

Таблица 60 – Зависимость уровня ТФР-β в зависимости от характеристики восстановления ритма

Показатель	Критерий	Уровень ТФР-β при синусовом
		ритме
Уровень ТФР-β при	Спирмен ρ(rho)	0,578*
фибрилляции предсердий	• • • • •	
	df (степеней свободы)	14
	р-значение	0,019
Примечание – значимость	при *p<0,05	

В результате корреляциононного анализа Спирмена значимой корреляции между уровнем галектина-3 при правильном и неправильном ритме не выявлено (r=0,317, p=0,151) (Таблица 61).

Таблица 61 – Зависимость уровня галектина 3 в зависимости от характеристики

восстановления ритма

Показатель	Критерий	Уровень галектина-3 при			
		правильном ритме			
Уровень галектина-3 при	Спирмен ρ(rho)	0,317			
неправильном ритме					
	df (степеней свободы)	20			
	0,151				
Примечание – значимость при *p<0,05					

При оценке матрицы зависимости назначения антикоагулянтной терапии пациентам и клиническими исходами выявлена достоверная корреляция между этими показателями (p=0,024) (Таблица 62).

Таблица 62 — Корреляционная матрица показателей назначения антикоагулянтной терапии и клинических исходов

Показатель	Критерий	Клинические исходы			
Антикоагулянтная терапия	Спирмен p(rho)	0,319*			
	df (степеней свободы)	48			
	0,024				
Примечание – значимость при *p<0,05					

3.4.1. Анализ зависимости применения антикоагулянтной терапии и риска клинических исходов

Влияние повышенного САД на размер ЛП у пациентов с впервые выявленной Φ П оценивалось с помощью бинарной логистической регрессии. Модель была значимой $\chi^2(1)=4,81$, p=0,028, при этом от 9,2% до 12,7% дисперсии шансов неблагоприятных исходов объяснялось предикторами.

Исходя из значений регрессионных коэффициентов применение антикоагулянтной терапии у пациентов, имеет прямую связь с клиническими исходами. Высокая частота назначения антикоагулянтной терапии приводит к уменьшению риска неблагоприятных клинических исходов в 6,458 раз (95% ДИ: 1,1-37,92) (Таблица 63).

Таблица 63 – Оценка влияния назначенной антикоагулянтной терапии на развитие клинических исходов

Предиктор	Bec	p	Отношение	95% ДИ		
			шансов	Нижняя	Верхняя	
				граница	граница	
Константа	0,916	0,273	0,4	0,0776	2,06	
Антикоагулянтная терапия	-1,865	0,039*	6,458	1,10	37,92	
Примечание – значимость при *p<0,05						

3.4.2. Анализ зависимости уровня систолического артериального давления и размеров левого предсердия

Влияние повышенного САД на размер ЛП у пациентов с впервые

выявленной $\Phi\Pi$ оценивалась с помощью бинарной логистической регрессии. Модель была значимой $\chi^2(1)=5,92$, p=0,015.

По обеим категориям исходов (отсутствие и наличие госпитализаций) 66% случаев были точно классифицированы, специфичность (87,1%) превышала чувствительность (25%).

Исходя из значений регрессионных коэффициентов, уровень САД имеет прямую связь с увеличением ЛП. Высокий уровень САД приводит к достоверному увеличению размеров ЛП в 5,08 раза (95% ДИ: 1,23-20,943) (Таблица 64).

Таблица 64 – Оце	нка влияния САД на	размер ЛП
------------------	--------------------	-----------

Предиктор	Bec	р	Отношение	95% доверительный интервал	
			шансов	Нижняя	Верхняя
				граница	граница
Константа	-7,79	0,015	4,12e-4	7,56e–7	0,225
Размер левого	1,63	0,024*	5,08	1,23	20,943
предсердия					
Примечание – значимость при *p<0,05					

Данная регрессионная модель используется для построения уравнения регрессии зависимости риска неблагоприятных клинических исходов от уровня ТФР-β и размера ЛП. Данная регрессионная модель зависимости влияния САД на размер ЛП показывает воспроизводимость исследования в реальной клинической практике.

3.4.3. Анализ связи факторов риска фибрилляции предсердий и неблагоприятных клинических исходов

Рассчитывался относительный риск развития неблагоприятных исходов в зависимости от факторов риска (Таблица 65).

Таблица 65 — Вклад факторов риска в относительный риск развития неблагоприятного клинического исхода

Фактор	Значение п (%)	OP	95%ДИ	р
Курение	23 (46%)	1,086	[0,694;1,7]	p=0,72
Злоупотребление	7 (14%)	1,024	[0,616; 1,7]	p>0,93
алкоголем п, %				_
Ожирение	38 (76%)	2,571	[1,241;5,327]	p=0,011*
Артериальная	42 (84%)	3,214	[1,374;7,521]	p=0,052*
гипертензия				
Заболевания щитовидной	3 (6%)	1,516	[1,235;1,862]	p=0,0001*
железы				
Гемодинамически	3 (6%)	1,469	[1,208;1,786]	p=0,0001*
значимые пороки сердца				
Исходно высокая ЧСС	4 (8%)	1,045	[0,577; 1,894]	p=0,72
Примечание – значимость п	ри *p<0,05			

Относительный риск при злоупотреблении алкоголем составил 1,024 95% ДИ [0,616;1,7], оказался статистически незначимым. Относительный риск при курении 1,086 95% ДИ [0,694;1,7], оказался статистически незначимым.

Относительный риск при исходно высокой ЧСС составил 1,045 95% ДИ [0,577;1,894], оказался статистически незначимым. Относительный риск при гипертиреозе составил 1,516 95% ДИ [1,235;1,862], при этом связь между фактором и исходом была статистически значимой (p<0,05). Относительный риск при ожирении составил 2,571 95% ДИ [1,241;5,327], при этом связь между фактором и исходом была статистически значимой (p<0,05). Относительный риск при артериальной гипертензии составил 3,214 95% ДИ [1,374;7,521], при этом связь между фактором и исходом была статистически значимой (p<0,05).

Относительный риск при гемодинамически значимых пороках сердца составил 1,469 95% ДИ [1,208;1,786], при этом связь между фактором и исходом была статистически значимой (p<0,05).

3.4.4. Анализ влияния факторов риска фибрилляции предсердий на вероятность восстановления ритма

В исследовании определялось влияние факторов риска на возможность

восстановления ритма у пациентов с впервые выявленной ФП (Таблица 66).

Таблица 66 — Влияние факторов риска на восстановления ритма у пациентов с впервые выявленной $\Phi\Pi$

Фактор	Значение п (%)	OP	95%ДИ	р
Курение	23 (46%)	0,3	[0,048;1,893]	p>0,05
Злоупотребление алкоголем	7 (14%)	0,698	[0,216; 2,257]	p>0,05
n, %				
Ожирение	38 (76%)	2,089	[1,144;3,817]	p<0,05*
Артериальная гипертензия	42 (84%)	6,585	[1,028;42,183]	p<0,05*
Заболевания щитовидной	3(6%)	2,368	[1,683;3,333]	p<0,05*
железы				
Пороки сердца	3 (6%)	0,746	[0,146;3,814]	p>0,05
Исходно высокая ЧСС	4 (8%)	0,742	[0,145; 3,790]	p>0,05
Примечание – значимость при	*p<0,05			

Наличие в анамнезе ожирения увеличивает относительный риск сохранения $\Phi\Pi$ после попытки восстановления ритма в 2,089 раз [1,144;3,817], артериальной гипертензии в 6,585 раз [1,028;42,183], заболеваний щитовидной железы в 2,368 раз [1,683;3,333].

3.4.5. Анализ связи ТФР-в и риска неблагоприятных исходов. Прогностическая модель

Для определения влияния повышенного ТФР- β и размера левого предсердия на исходы у пациентов с впервые выявленной ФП использовалась бинарная логистическая регрессия. Модель была значимой $\chi^2(2)$ =44,8, p<0,001, при этом от 61,5% до 84,2% дисперсии шансов неблагоприятных исходов объяснялась предикторами. Исходя из значений регрессионных коэффициентов, уровень ТФР- β имеет прямую связь с вероятностью неблагоприятного исхода. Высокий уровень ТФР- β увеличивает шансы неблагоприятных исходов в 30,88 раза (95% ДИ: 0,837-86,02). При этом размер ЛП достоверно не увеличивал риск исходов (p=0,86) (Таблица 67).

Предиктор	Bec	p	Отношение	95% доверительный		
			шансов	интер	эвал	
				Нижняя	Верхняя	
				граница	граница	
Константа	-21,594	0,012	-38,505	3,17e-17	-4,84	
Трансформирующий	3,43	0,010*	30,888	0,837	86,02	
фактор роста в						
Размер ЛП	-0,223	0,86	0,800	-2,704	2,24	
Примечание – значим	Примечание – значимость при *p<0,05					

Таблица 67 – Анализ влияния ТФР-в и размера ЛП на неблагоприятные исходы

Наблюдаемая зависимость описывается уравнением:

$$P = 1 / (1 + e - z) * 100\%$$

$$z = -21,594 - 0,223*XJ\Pi + 3,43*XT\Phi P$$
 (1)

где Р – вероятность наличия неблагоприятных клинических исходов (%),

 $XЛ\Pi$ — наличие увеличения $J\Pi$ (0 — не увеличено, 1 — увеличено), $XT\Phi P$ — уровень $T\Phi P$ - β (нг/мл)

Полученная регрессионная модель является статистически значимой (p<0,001). Исходя из значения коэффициента детерминации Найджелкерка, модель (1) определяет 84,2% дисперсии вероятности развития неблагоприятных исходов. Площадь под ROC-кривой, соответствующей взаимосвязи прогноза развития неблагоприятного исхода и уровня ТФР-в, составила 0,991. Полученная модель была статистически значимой. Пороговое значение ТФР-β в точке cut-off равно 5,61 нг/мл. При ТФР-в, равном или превышающим данное значение, прогнозировался высокий риск развития неблагоприятных клинических исходов. Чувствительность И специфичность метода составили 96,7% 76,5% соответственно.

Такая же кривая была получена при оценке взаимосвязи рисков повторных госпитализаций и уровня ТФР-β. Это связано с тем, что у 100% пациентов с повторными госпитализациями были неблагоприятные клинические исходы (Рисунок 18).

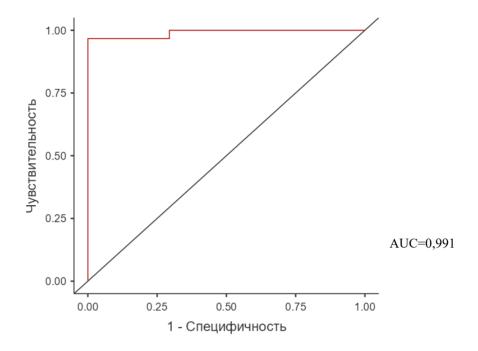


Рисунок 18 – ROC кривая взаимосвязи прогноза развития неблагоприятного исхода и уровня ТФР-β

3.4.6. Анализ связи уровня ТФР-в и риска повторных госпитализаций

Определение влияния повышенного ТФР- β на количество госпитализаций у пациентов с впервые выявленной ФП оценивалась с помощью бинарной логистической регрессии. Модель была значимой $\chi^2(1)=46,5$, p<0,001, при этом от 60,5% до 83,8% дисперсии шансов неблагоприятных исходов объяснялась предикторами. По обеим категориям исходов (отсутствие и наличие госпитализаций) 90% случаев были точно классифицированы, чувствительность превышала специфичность.

Исходя из значений регрессионных коэффициентов, уровень ТФР-β имеет прямую связь с вероятностью повторных госпитализаций. Высокий уровень ТФР- в увеличивает шансы повторной госпитализации в 31,4 раза (95% ДИ: 2,48-397,39) (Таблица 68).

Таблица 68 – Влияние ТФР-в на возможность повторных госпитализаций

Предиктор	Bec	p	Отношение	95% доверител	ьный интервал
			шансов	Нижняя	Верхняя
				граница	граница
Константа	-21,77	0,010	3,53e–10	2,31e–17	0,00539
Трансформирующий фактор роста β	3,35	0,008*	31,4	2,48	397,39528
Примечание – значимость при *p<0,05					

3.4.7. Анализ связи между уровнем ТФР-в и характером восстановления ритма

Определение влияния повышенного ТФР- β на характер восстановления ритма у пациентов с впервые выявленной ФП оценивалась с помощью бинарной логистической регрессии. Модель была статистически незначимой $\chi^2(1)=9,10e-4$, p=0,976.

Площадь под ROC-кривой, соответствующей взаимосвязи прогноза восстановления ритма и уровня $T\Phi P$ - β , составила 0,531. Полученная модель была статистически значимой. Пороговое значение $T\Phi P$ - β в точке cut—off равно 6,45 нг/мл. При $T\Phi P$ - β , равном или превышающим данное значение, прогнозировался высокий риск сохранения $\Phi\Pi$, после попытки восстановления ритма. Чувствительность и специфичность метода составили 81,82% и 39,29% соответственно (Рисунок 19).

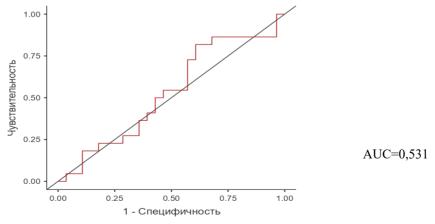


Рисунок 19 — ROC-кривая взаимосвязи прогноза восстановления ритма и уровня $T\Phi P$ - β

3.4.8. Прогнозирование неблагоприятных клинических исходов у пациентов высокого риска с впервые выявленной фибрилляцией предсердий

С целью оценки комплексного влияния факторов на риск неблагоприятных исходов проведен регрессионный анализ.

Проведенный анализ позволил выделить несколько факторов, которые в комплексе достоверно повышали риски развития неблагоприятных исходов (Таблица 69).

Таблица 69 – Комплексное влияние некоторых факторов на риски развития неблагоприятных исходов

Предиктор	Bec	SE	Z	p	Отношение шансов	
Константа	-4,81	1,52	-3,17	0,002*	0,00813	
ΑΓ:						
0 – 1	3,78	1,83	2,06	0,039*	43,65476	
пол ж-0,м-1:						
0 – 1	3,25	1,51	2,15	0,032*	25,75393	
ТФР β меньше–0,						
больше–1:						
0 – 1	3,8	1,81	2,10	0,036*	44,64065	
ожирение:						
0-1	3,25	1,51	2,15	0,032*	25,75393	
Примечание – значимость при *p<0,05						

При наличии комплекса данных факторов риска, пациента относили к группе высокого риска неблагоприятных исходов. Для определения значимости высокого риска на исходы у пациентов с впервые выявленной ФП использовалась бинарная логистическая регрессия. Модель была значимой $\chi^2(1)=32,4$, p<0,001, при этом от 47,6% до 65,9% дисперсии шансов неблагоприятных исходов объяснялось предикторами.

Исходя из значений регрессионных коэффициентов, пациенты высокого

риска имеют прямую связь с вероятностью неблагоприятного клинического исхода. Пациенты высокого риска имеют шансы неблагоприятных исходов в 89,6 раз больше, чем пациенты низкого риска (95% ДИ: 9,6-835,9).

Полученная регрессионная модель является статистически значимой (p<0,001). Исходя из значения коэффициента детерминации Найджелкерка, модель (2) определяет 65,9% дисперсии вероятности развития неблагоприятных исходов.

Наблюдаемая зависимость описывается уравнением регрессии:

$$P = \frac{1}{1 + e^{-Z}}$$

$$z = -3.33 + 4.5 *x \Pi BP$$
(2)

где P — вероятность наличия неблагоприятных клинических исходов (%) e — число Эйлера, равное 2,718;

хПВР – принадлежность к группе риска (0 – низкий риск, 1 – высокий риск)

Площадь под ROC-кривой, соответствующей взаимосвязи прогноза развития неблагоприятного исхода и уровня ТФР- β , составила 0,895. Полученная модель была статистически значимой. Чувствительность и специфичность метода составили 94,1% и 84,8% соответственно (Рисунок 20). При ТФР- β равном или превышающем 6,52 нг/мл, пациента относили к группе высокого риска.

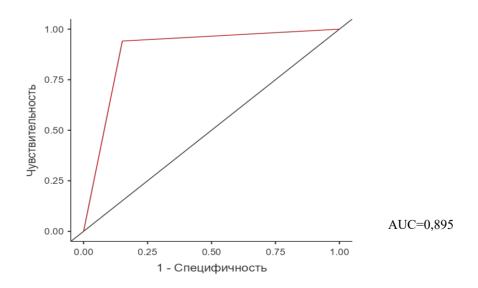


Рисунок 20 — ROC-кривая взаимосвязи прогноза неблагоприятных клинических исходов у пациентов высокого риска

Таким образом, высокая частота назначения антикоагулянтной терапии приводит к уменьшению риска неблагоприятных клинических исходов в 5,6 раз (95% ДИ: 1,1-37,92). Высокий уровень САД приводит к достоверному увеличению размеров ЛП в 5,08 раза (95% ДИ: 1,23-20,943). Наличие в анамнезе гипертиреоза увеличивает риск неблагоприятных клинических исходов в 1,516 раз 95% ДИ [1,235;1,862], ожирения в 2,571 раз 95% ДИ [1,241;5,327], артериальной гипертензии 3,214 раз 95% ДИ [1,374;7,521], при пороках сердца в 1,469 раз 95% ДИ [1,208;1,786]. Наличие в анамнезе ожирения увеличивает относительный риск сохранения ФП после попытки восстановления ритма в 2,089 раз 95% ДИ [1,144;3,817], артериальной гипертензии в 6,585 раз 95% ДИ[1,028; 42,183], заболеваний щитовидной железы в 2,368 раз 95% ДИ [1,683; 3,333].

При ТФР- β равном или превышающим 5,61 нг/мл, прогнозировался высокий риск развития неблагоприятных клинических исходов. Высокий уровень ТФР- β увеличивает шансы повторной госпитализации в 31,4 раза (95% ДИ: 2,4-397,39).

При ТФР- β равном или превышающим 6,45 нг/мл, прогнозировался высокий риск сохранения ФП после попытки восстановления ритма. Пациенты высокого риска имеют шансы неблагоприятных исходов в 89,6 раз больше, чем пациенты низкого риска (95% ДИ: 9,6-835,9).

3.5. Основные характеристики пациентов с впервые выявленной фибрилляцией предсердий, наличием или отсутствием хронических неинфекционных заболеваний

В группу с ХНИЗ включены 78 пациентов из них 36 мужчин и 42 женщины в возрасте от 18 лет, средний возраст $63,0\pm11,1$ лет. Контрольную группу составили 50 пациентов без тяжелых ХНИЗ (60% мужчин, 40% женщин). Средний возраст составил $64,2\pm10$ лет. Средней возраст пациентов исследуемых групп был сопоставим (p=0,305).

При этом, в группах с ХНИЗ и без ХНИЗ ИМТ статистически значимо не

различались (p=0,422). Уровень САД и ДАД в группах значимо не различался (p=0,146, p=334) (Таблица 70).

Таблица 70 – Основные характеристики когорты пациентов

The state of the s			
Показатели	Пациенты без	Пациенты с ХНИЗ	p
	XHИЗ (n=50)	(n=78)	
Возраст	$64,2\pm10$	63,0±11,1	$0,305^{1}$
Пол	М:Ж=60%(30):	М:Ж=46,75%(36):	$0,102^{2}$
	40%(20)	53,25%(42)	
Рост,см	171±7,77	172 [165;177]	$0,266^{1}$
Вес,кг	82,5 [76,3;96,8]	88 [78;98]	0,0451
ИМТ(кг/м²)	29,5±5,32	29,3±2,56	$0,422^{1}$
Средний уровень САД при	133 [120,142]	136 [128;144]	$0,146^{1}$
включении в исследование,			
мм.рт.ст			
Средний уровень ДАД при	80 [76;85]	82 [78;86]	0,3341
включении в исследование,			
мм.рт.ст			
Примечание – 1 – на основании	критерия Манна-Уитн	и, 2 – на основании точного	теста

Примечание – 1 – на основании критерия Манна–Уитни, 2 – на основании точного теста Фишера

У пациентов с ХНИЗ достоверно чаще встречались факторы риска: высокая ЧСС (p=0,001), ожирение (p<0,001) и артериальная гипертензия (p<0,001) (Таблица 71).

Таблица 71 – Факторы риска у пациентов с наличием или отсутствием ХНИЗ

Фактор	Пациенты без ХНИЗ (n=50)	Пациенты с ХНИЗ (n=78)	р
Гемодинамически значимые пороки сердца	3 (6%)	2 (2,56%)	0,379
Заболевания щитовидной железы	3 (6%)	10 (12,8%)	0,246
Исходно высокая ЧСС	4 (8%)	25 (32,1%)	0,001*
Курение	4 (8%)	12 (15,4%)	0,278
Злоупотребление алкоголем	7 (14%)	7 (9%)	0,398
Ожирение	38 (76%)	32 (41%)	<0,001*
Артериальная гипертензия	42 (84%)	76 (97,4%)	<0,001*
Примечание – значимость при	и *p<0,05		

Характеристика данных показателей эхокардиографии представлена в

Таблице 72. По результатам оценки данных исследования, значения всех эхокардиографических показателей у больных были сопоставимы как у пациентов с ХНИЗ, так и без них. Исключение составил показатель ФВ ЛЖ, значение которого было сопоставимо выше у пациентов с ХНИЗ по сравнению с группой без ХНИЗ в обеих группах (p=0,025) (Таблица 72).

Таблица 72 – Показатели эхокардиографии

Показатель	Пациенты без ХНИЗ	Пациенты с ХНИЗ	p
КДР ЛЖ	4,7 [3,58;5,4]	5,2 [4,8;5,5]	0,508
КСР ЛЖ	3,5 [3,2;3,83]	3,5 [3,3;3,8]	0,949
ФВ по Симпсону, %	62 [60;65]	60 [55,5;63,3]	0,025*
Среднее значение	4,34±0,494	4,57 [4,2;4,77]	0,259
размера ЛП			
Примечание – значи	мость при *p<0,05		

При оценке показателей биомаркеров фиброза миокарда выявлены значимые различия между уровнями ТФР-β и галектина-3 в группах с наличием и отсутствием ХНИЗ (p<0,001) (Таблица 73).

Таблица 73 – Показатели маркеров фиброза миокарда

Показатель	Пациенты без ХНИЗ	Пациенты с ХНИЗ	p		
Средний уровень трансформирующего фактора роста β	7,03 [5,62;8,58]	40,5±20,4	<0,001*		
Средний уровень галектина-3	33,9 [25,1;47]	18,6 [13,4;23,6]	<0,001*		
Примечание – значимость при *p<0,05					

Наиболее часто принимаемой группой препаратов среди пациентов с ХНИЗ оказались иАПФ 62 (82,7%), β -адреноблокаторы 54 (72%), антикоагулянты 43(86%), чаще всего ривароксабан 24 (46,2%), за которыми следовали антиаритмические препараты 46 (61,3%), чаще всего соталол 22 (47,8%) (Таблица 74). В группе пациентов без ХНИЗ большинство пациентов принимали ингибиторы иАПФ – 42 (84%) и в равной доле статины и антиаритмические

препараты 31 (62%). Из антиаритмических препаратов чаще всего использовался соталол 17 (54,8%). Антикоагулянты использовались у 52 (69,3%) пациентов, чаще всего ривароксабан 24 (55,8%). В обеих группах меньшинство пациентов принимало диуретики (Таблица 74). Различия в контрольной группе и группе с ХНИЗ были в отношении β–адреноблокаторов (р=0,035), диуретиков (р=0,04) и антиагрегантов (p<0,001).

Таблица 74 – Лекарственная терапия

Препарат	Пациенты без ХНИЗ	Пациенты с ХНИЗ	р
иАПФ, n(%)	42 (84%)	62 (82,7%)	0,414
β-адреноблокаторы, п(%)	28 (56%)	54 (72%)	0,035*
Статины, n(%)	31 (62%)	30 (40%)	0,067
Антиаритмические препараты, п (%)	31 (62%)	46 (61,3%)	0,945
Пропафенон	6 (19,4%)	4 (8,7%)	0,348
Соталол	17 (54,8%)	22 (47,8%)	0,108
Аллапинин	8 (25,8%)	18 (32,6%)	0,373
Амиодарон	0 (0%)	2 (4,3%)	0,221
Антиагреганты, n(%)	0 (0%)	21 (28%)	<0,001*
Диуретики, п(%)	18 (36%)	14 (18,7%)	0,04*
Антикоагулянты, п(%)	43 (86%)	52 (69,3%)	0,053
Виды ан	гикоагулянтов		
Апиксабан, п(%)	11 (25,6%)	14 (26,9%)	0,649
Дабигатран, п(%)	5 (11,6 %)	3 (5,8%)	0,261
Ривароксабан, п(%)	24 (55,8%)	24 (46,2%)	0,134
Варфарин, п(%)	1 (2,3%)	1 (1,9%)	1
Примечание – значимость при *p<0,05	<u> </u>	·	·

В группах оценивались неблагоприятные клинические исходы в виде конечных точек: сердечно–сосудистые события (инфаркт, инсульт), повторные госпитализации, смерть, процедуры РЧА, КАГ. Выявлены различия в группах по количеству повторных госпитализаций (p=0,044), по количеству смертельных исходов (p=0,042), количеству процедур РЧА (p=0,031) (Таблица 75).

Таблица 75 – Клинически значимые исходы

Исход	Пациенты без	Пациенты с	p
	XНИЗ (n=50)	XHИЗ (n=78)	
Радиочастотная аблация (РЧА)	5 (10%)	16 (20,5%)	0,031*
Коронароангиография	5 (10%)	8 (10,3%)	0,665
Сердечно—сосудистые	1 (2%)	4 (5,1%)	0,124
события (инфаркт)			
Сердечно—сосудистые	1 (2%)	6 (7,7%)	0,250
события (инсульт)			
Смерть	0 (0%)	7 (8,9%)	0,042*
Госпитализации	29 (70%)	31 (47,4%)	0,044*
Примечание – значимость при *p<0,05			

Таким образом, по данным исследования у пациентов с ХНИЗ достоверно чаще встречались такие факторы риска как высокая ЧСС (p=0,001), ожирение (p<0,001) и артериальная гипертензия (p<0,001). При оценке показателей биомаркеров фиброза миокарда в сравниваемых группах выявлены значимые различия между уровнями ТФР- β и галектина-3 (p<0,001). Различия в принимаемой терапии между группами были статистически значимы для частоты приема β -адреноблокаторов (p=0,035), диуретиков (p=0,04) и антиагрегантов (p<0,001). Количество повторных госпитализаций было выше в группе с ХНИЗ (p=0,044), также как количество смертельных исходов (p=0,042) и количество процедур РЧА (p=0,031).

ЗАКЛЮЧЕНИЕ

Фибрилляция предсердий — наиболее распространенная аритмия, которая характеризуется высоким риском развития тромбоэмболических осложнений, развитием инфаркта миокарда и инсульта. В основе такой клинически значимой аритмии лежит процесс диффузного фиброза миокарда.

На сегодняшний момент нет достоверного неинвазивного метода диагностики фиброза миокарда, который мог бы обладать прогностической силой, высокой чувствительностью и специфичностью, экономической доступностью и обоснованностью, клинической пользой, патофизиологической значимостью [56].

На данном этапе интерес представляют неинвазивные маркеры фиброза миокарда. Биомаркеры могут применяться для диагностики, прогнозирования, оценки ответа на медицинское вмешательство. В последние годы описано значительное количество перспективных биомаркеров у пациентов с фибрилляцией предсердий, но немногие из них подтвердили возможность клинического применения.

Также, важным в диагностике фибрилляции предсердий является выявление предикторов неблагоприятных сердечно-сосудистых событий. Это позволит предотвратить развитие осложнений, снизить частоту повторных госпитализаций, тем самым, улучшить индивидуальный прогноз и качество жизни пациентов, уменьшить экономическую нагрузку на здравоохранение.

Вышеизложенные положения обуславливают актуальность и важность выполненной работы, в которой реализован комплексный подход к определению прогноза и исходов у пациентов с впервые выявленной фибрилляцией предсердий с применением как стандартных критериев, так и высокочувствительных биохимических маркеров.

В данной работе проведена детальная оценка клинико-анамнестических характеристик, а также результатов инструментальных, лабораторных методов исследования миокардиального фиброза у пациентов с впервые выявленной фибрилляцией предсердий.

В настоящее исследование включили 50 пациентов в возрасте 64,2±10 лет, соответствующих критериям включения. Большинство пациентов находилось в группе 60-80 лет (62%), что соответствует данным российской и зарубежной литературы [10,43]. У пациентов с впервые выявленной ФП важным является выявление факторов риска с целью прогнозирования течения, исходов и развития осложнений, а также определения тактики лечения и реабилитационных мероприятий.

В нашем исследовании среди факторов риска наиболее значимыми являлись артериальная гипертензия 42 (84%), курение 23 (46%), ожирение 38 (76%), избыточная масса тела 8 (16%), злоупотребление алкоголем 7 (14%), заболевания щитовидной железы 3 (6%), гемодинамически значимые пороки сердца 3 (6%), исходное высокая частота сердечных сокращений 4 (8%).

По данным исследования РЕКУР-ФП, определены наиболее значимые факторы, которые влияют на выживаемость пациентов с ФП: возраст, форма ФП, ФК ХСН, наличие СД, госпитализации за последний год [26]. В некоторых других исследованиях среди наиболее значимых модифицируемых факторов риска ФП значение имеют артериальная гипертензия и ожирение [36].

В нашем исследовании расчитывался относительный риск развития неблагоприятного исхода и возможности восстановления ритма в зависимости от факторов риска. Выявлено, что относительный риск развития неблагоприятных исходов при гипертиреозе составил 1,516 95% ДИ [1,235;1,862], при ожирении – 2,571 95% ДИ [1,241;5,327], при артериальной гипертензии – 3,214 95% ДИ [1,374;7,521], при пороках сердца – 1,469 95% ДИ [1,208;1,786]. Относительный риск сохранения ФП после попытки восстановления ритма при наличии ожирения составляет 2,089 [1,144;3,817], артериальной гипертензии – 6,585 [1,028; 42,183], при заболеваниях щитовидной железы – в 2,368 раз [1,683;3,333].

Анализ клинических симптомов установил, что наиболее часто пациенты испытывали умеренные 24 (48%) (Класс EHRAIIб) и выраженные 20 (40%) (Класс EHRAIII) симптомы заболевания.

Анализ основных эхокардиографических показателей выявил достоверное

увеличение размеров ЛП $4,34\pm0,494$ см, показатели КДР ЛЖ 4,7 [3,58;5,4] см, КСР ЛЖ 3,5 [3,2;3,83] см, ФВ 62 [60;65]% были в пределах нормы. Это преимущественно связанно с отсутствием тяжелых ХНИЗ, что и подтверждается при сравнении групп пациентов с ХНИЗ и без них. Значение ФВ ЛЖ было выше у пациентов с ХНИЗ по сравнению с группой без ХНИЗ в обеих группах (p=0,025).

При оценке связи между уровнем маркеров фиброза миокарда и ИМТ, установлено, что уровень галектина-3 положительно связан с показателем ИМТ>30кг/см2 (r=0,773, p<0,001), при этом у пациентов со 2 и 3 степенью ожирения показатель уровня галектина-3 был выше, чем у пациентов с ожирением 1 степени (p<0,05). Уровень ТФР- β значимо не коррелировал с ИМТ(r=-0,083, p=556). В результате исследования была выявлена положительная корреляция между уровнем ТФР- β и размером ЛП (r=0,636; p=0,040).

По результатам собственного исследования в группе у пациентов с неправильным ритмом уровень ТФР- β был достоверно выше, чем у пациентов с правильным ритмом (p<0,01). Также определено, что уровень ТФР- β и галектина-3 не коррелировал в зависимости от длительности пароксизма ФП (Критерий Манна-Уитни U= 262, p=0,187, U= 280, p=0,711). По данным исследования Е.Л. Заславской, концентрация ТGF- β в сыворотке крови у пациентов с ФП и метаболическим синдромом (MC) составила 6700,2 пг/мл, что в 2,6 раза выше, чем у пациентов с МС без ФП и в 4,7 раза выше, чем у здоровых (p < 0,0001). Выявлена положительные корреляции между ТФР- β и объёмом ЛП (r = 0,203, p = 0,03) [35].

В нескольких исследованиях обнаружена положительная корреляция уровня ТФР-β в сыворотке крови и процента фиброза левого предсердия у пациентов с ФП (r=0,539, p=0,04) [20,28]. При этом длительность ФП не коррелировала со степенью выраженности фиброза левого предсердия [28]. По данным проведенного линейного регрессионного анализа, установлено влияние уровней ТФР-β на площадь фиброза левого предсердия у пациентов с ФП [20].

В нашем исследовании определена связь уровня ТФР-β и конечных точек у пациентов в группе с 1 и более госпитализациями. Уровень ТФР-β был

достоверно выше, чем у пациентов с отсутствием госпитализация (p<0,01). У пациентов с неблагоприятными клиническим исходами уровни $T\Phi P$ - β были выше, чем у пациентов без клинически значимых исходов (U=15, p<0,01). При этом достоверных различий по уровню галектина-3 между группами с неблагоприятными клиническими исходами и без неблагоприятных исходов не было (U=230, p=0,758).

Однако, в исследованиях других авторов уровень галектина-3 при фибрилляции предсердий (ФП) выше, чем у здоровых лиц. По данным, при персистирующей ФΠ уровень форме галектина-3 выше, при пароксизмальной. Также выявлена положительная корреляция между уровнем галектина-3 и длительностью течения аритмии [19]. Также высокий уровень галектина-3 может быть независимым предиктором отсутствия медикаментозной антиаритмической терапии у больных с пароксизмальной и персистирующей формами ФП в сочетании с метаболическим синдромом [8].

ТФР-β достоверно повышен у пациентов с ХНИЗ (р<0,001), что связано с наличием у пациентов нашего исследования заболеваний, сопровождающихся фиброзом. Например, известно, что жировая ткань является источником Чумаковой профибротических факторов. В работе Γ. соавт. была продемонстрирована связь между толщиной ЭЖТ и уровнями маркеров фиброза фактора трансформирующего миокарда роста бета, матриксной металлопротеиназы 3 и количеством коллагена [40].

Сердечно—сосудистые заболевания, включая артериальную гипертензию, ИБС и СН, вызывают расширение ЛП и увеличивают риск развития ФП. Поражение митрального клапана также сопровождается дилатацией ЛП из-за высокого давления или перегрузки объемом (Wang T.K.M.et al., 2020) [104]. Как известно, сопутствующая патология при нарушениях ритма способствует развитию неблагоприятных клинических исходов у пациентов. По результатам нашего исследования в группе с ХНИЗ чаще встречались такие неблагоприятные клинические исходы, такие как повторные госпитализации (р<0,044), смерть (р<0,042) и процедуры РЧА (р<0,031). Здоровый образ жизни и отсутствие

факторов риска связаны со значительно более низким риском сердечно—сосудистых заболеваний и осложнений, включая ишемический инсульт, инфаркт миокарда, госпитализацию из-за сердечной недостаточности и смерть от всех причин [80]. Также наблюдается обратная зависимость между количеством факторов здорового образа жизни и риском сердечно—сосудистых осложнений.

Для определения влияния повышенного ТФР-в и размера левого предсердия на исходы у пациентов с впервые выявленной ФП использовалась бинарная логистическая регрессия. Для построенной нами логистической хи-квадрат составил 44,8 (p<0,001), площадь под ROC-кривой – 0,924 (p<0,001), чувствительность и специфичность при пороговом значении для вероятности неблагоприятного исхода при уровне ТФР-В равном 6,52 нг/мл составили, 96,7% и 76,5% соответственно. Данные статистические параметры сопоставимы с предложенными на сегодняшний день прогностическими моделями у пациентов с сердечно-сосудистыми заболеваниями [14,21].Однако, НИ одной прогностической модели не были использованы показатели лабораторных маркеров фиброза миокарда.

Для определения значимости высокого риска на исходы у пациентов с впервые выявленной ФП нами использовалась бинарная логистическая регрессия. Для построенной логистической модели хи–квадрат составил 32,4 (р<0,001) площадь под ROC-кривой – 0,895 (р<0,001), чувствительность и специфичность при пороговом значении для вероятности неблагоприятного исхода при уровне ТФР-р равном 6,52 нг/мл составили 94,1% и 84,8% соответственно. Данные сопоставимы с предложенными на сегодняшний день прогностическими моделями у пациентов с факторами риска сердечно-сосудистых заболеваний [37,110]. В других прогностических моделях также не использовались показатели лабораторных маркеров фиброза миокарда.

выводы

- 1. У больных с впервые выявленной фибрилляцией предсердий факторами, неблагоприятных увеличивающими риск клинических исходов (смерть, ИМ, инсульт, РЧА. рецидив/повторный/первичный КАГ. повторная госпитализация по поводу сердечно-сосудистых событий (инфаркт, инсульт)), являются: ожирение (ОР 2,571, 95% ДИ [1,241;5,327]), артериальная гипертензия (ОР 3,214, 95% ДИ [1,374;7,521]), гемодинамически значимые пороки сердца (ОР 1,469 95% ДИ [1,208;1,786]), заболевания щитовидной железы (ОР 1,516 95% ДИ [1,235;1,862]).
- 2. У пациентов с впервые выявленной фибрилляцией предсердий средний уровнь маркеров синтеза коллагена ТФР-β составил 7,03 [5,62;8,58] нг/мл. У пациентов с впервые выявленной фибрилляцией предсердий средний уровень маркеров деградации коллагена галектина-3 составил соответственно 33,9 [25,1; 47] нг/мл.
- 3. У крыс с индуцированным фиброзом миокарда выявлена статистически значимая положительная корреляция между уровнем ТФР- β и размером кардиомиоцита (r=0,590, p=0,004), между уровнем ТФР- β и фиброзом ЛП (r=0,627, p=0,002), между размером кардиомиоцита ЛП и фиброзом миокарда ЛП (r=0,602, p 0,002).
- 4. Уровень ТФР-β выше у пациентов с сохраняющейся фибрилляцией предсердий (8,76 нг/мл), чем у пациентов с восстановленным синусовым ритмом (5,1 нг/мл) (p=0,019). По данным анализа значимых различий между длительностью фибрилляции предсердий и ТФР-β не выявлено (p=0,187).
- 5. При значении ТФР-β более 6,45 нг/мл имеется высокий риск сохранения ФП, после попытки восстановления синусового ритма. Пациенты группы высокого риска (с наличием АГ, ожирения, ТФР-β более 6,52 нг/мл, мужского пола) имеют шансы неблагоприятных исходов больше, чем пациенты низкого риска (ОШ 89,6, 95% ДИ: 9,6-835,9).

У пациентов, имеющих 1 и более госпитализаций по сердечно-сосудистой

причине, уровень ТФР-в был достоверно выше, чем у пациентов не имеющих повторных госпитализаций (p<0,01). При ТФР-в более 5,61 нг/мл был высокий неблагоприятных (смерть, риск развития клинических исходов ИМ, РЧА, рецидив/повторный/первичный инсульт, $KA\Gamma$, повторная госпитализация по поводу сердечно-сосудистых событий (инфаркт, инсульт)) (ОШ 30,88, 95% ДИ: 0,837-86,02).

Риск неблагоприятных клинических исходов в течении 12 месяцев описан следующим регрессионным уравнением: $z = -21,594-0,223*XЛП+3,43*XT\Phi P$, и в том числе, зависит от уровня $T\Phi P$ - β . Риск развития неблагоприятных исходов в течении 12 месяцев в группе высокого риска, описывается следующим регрессионным уравнением: $z = -3,33+4,5*x\Pi B P$, и также зависит от значений $T\Phi P$ - β .

6. Назначение антикоагулянтной терапии пациентам с впервые выявленной фибрилляцией предсердий приводило к уменьшению риска неблагоприятных клинических исходов в 6,5 раз (95% ДИ: 1,1-7,9). Пациентам с ХНИЗ и впервые выявленной фибрилляцией предсердий чаще назначались β-адреноблокаторы (p=0,035) и антиагреганты (p<0,001).

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- 1. В комплекс лабораторного обследования пациентов с впервые выявленной ФП с наличием и отсутствием ХНИЗ необходимо включать оценку биомаркеров фиброза миокарда, в том числе, ТФР-β для оценки рисков неблагоприятных клинических исходов и рисков повторных госпитализаций по сердечно-сосудистой причине.
- 2. При значении ТФР-β более 6,52 нг/мл пациенты относятся к группе высокого риска неблагоприятных клинических исходов и требуют более тщательного диспансерного наблюдения с оценкой комплаентности.
- 3. При значении ТФР-β 6,45 нг/мл имеется высокий риск сохранения ФП, после попытки восстановления синусового ритма, что может определять стратегию ведения пациента с ФП на первоначальном этапе.

ПЕРСПЕКТИВЫ ДАЛЬНЕЙШЕЙ РАЗРАБОТКИ ТЕМЫ

Дальнейшие исследования о роли маркеров фиброза миокарда у пациентов с впервые выявленной фибрилляцией предсердий (ФП) должны быть направлены на многоаспектный анализ факторов риска, анализ сопутствующих заболеваний и модифицируемых поведенческих факторов, а также на подтверждение роли маркеров фиброза В процессах ремоделирования миокарда. Необходимо факторов расширить понимание роли каждого из этих развитии ремоделирования миокарда и возникновении аритмии.

Перспективным направлением является разработка валидация комплексных моделей риска, объединяющих клинические, инструментальные и биохимические параметры. Эти модели должны учитывать только традиционные факторы риска, но и новые биомаркеры фиброза миокарда, такие как галектин-3, ТФР-в. Разработка таких моделей позволит более точно стратифицировать пациентов ПО риску развития инсульта, сердечной недостаточности и внезапной смерти при ФП, а также персонализировать подходы к терапии.

Наконец, необходимо проведение клинических исследований, направленных на оценку эффективности новых терапевтических стратегий, направленных на предотвращение или замедление прогрессирования фиброза миокарда и улучшение структурно-функционального состояния предсердий. Это может включать изучение влияния антифибротических препаратов, ингибиторов РААС и препаратов, воздействующих на метаболические процессы в миокарде. А разработки антифиброзных перспективы новых препаратов также ДЛЯ профилактики и лечения ФП.

СПИСОК СОКРАЩЕНИЙ

АГ – артериальная гипертония

АД – артериальное давление

ДАД –диастолическое артериальное давление

ИБС – ишемическая болезнь сердца

ИМ – инфаркт миокарда

ИМТ – индекс массы тела

КАГ – коронароангиография

КСР ЛЖ – конечный систолический размер левого желудочка

КДР ЛЖ – конечный диастолический размер левого желудочка

ЛП – левое предсердие

РЧА – радиочастотная аблация

САД – систолическое артериальное давление

ССЗ – сердечно-сосудистые заболевания

 $T\Phi P$ - β – трансформирующий фактор роста β

ФВ – фракция выброса

 $\Phi\Pi-$ фибрилляция предсердий

 $\Phi P - \varphi$ актор риска

ХСН – хроническая сердечная недостаточность

ЧСС – частота сердечных сокращений

ЭКГ – электрокардиография

ЭКС – электрокардиостимулятор

ЭхоКГ – эхокардиография

ЭЦМ – эндоцитоплазматический матрикс

СПИСОК ЛИТЕРАТУРЫ

- 1. Агибова, Н.Е. Прогнозирование риска тромбоэмболических осложнений у пациентов с неклапанной фибрилляцией предсердий / Н.Е. Агибова, О.И. Боев. Текст : электронный // Современные проблемы науки и образования. 2017. № 5. URL: https://science_education.ru/article/view?id=26886
- Бабенко, А.Ю. Фибрилляция предсердий при тиреотоксикозе детерминанты развития и сохранения / А.Ю. Бабенко, Е.Н. Гринева, В.Н. Солнцев. Текст : непосредственный // Клиническая и Экспериментальная Тиреоидология. 2013. №1. С. 29-37.
- 3. Беловол, А.Н. Клеточные, молекулярные и структурные механизмы ремоделирования левого желудочка при сердечной недостаточности / А.Н. Беловол, И.И. Князькова. Текст: непосредственный // Практичная аналогия. 2013. № 4(63). С. 67.
- 4. Бунин, Ю.А. Фибрилляция предсердий и хроническая сердечнаянедостаточность: практические аспекты и дискуссионные вопросы рациональнойфармакотерапии / Ю.А. Бунин, С.В. Миклишанская. Текст : непосредственный // Рациональная Фармакотерапия в Кардиологии. 2017. № 6. С. 856-862.
- 5. Васюк Ю. А. Рекомендации по количественной оценке структуры и функции камер сердца / Ю. А. Васюк // Российский кардиологический журнал. 2012. № 4S4 С.1-27.
- 6. Взаимосвязь фибрилляции предсердий и хронической сердечной недостаточности. Современные подходы к лечению / Д.А. Гаглоева, Н.Ю. Миронов, Л.Ю. Лайович [и др.]. Текст: непосредственный // Кардиологический вестник. 2021. № 2. С. 5-14.
- 7. Галектин-3 у пациентов с метаболическим синдромом и фибрилляцией предсердий / В.А. Ионин, О.В. Листопад, С.Е. Нифонтов [и др.]. Текст : непосредственный // Артериальная гипертензия. 2014. Т. 20, № 5. С. 49-83.
 - 8. Галектин–3 у пациентов с пароксизмальной и персистирующей

- формами фибрилляции предсердий и метаболическим синдромом / В.А. Ионин, Е.Л. Заславская, А.В. Соболева [и др.]. Текст : непосредственный // Кардиология. $2016. N_{\odot}6. C.$ 79.
- 9. Диагностическая значимость биохимических маркеров при хронической сердечной недостаточности со сниженной, пограничной и сохраненной фракцией выброса левого желудочка / Е.В. Базаева, Р.П. Мясников, В.А. Метельская, С.А. Бойцов. Текст: непосредственный // Кардиология. 2017. Т. 57, № 3. С. 58-64.
- 10. Динамика частоты фибрилляции предсердий в российской популяционной выборке за 13 лет наблюдения / М.Ю. Шапкина, Е.В. Маздорова, Е.М. Авдеева [и др.]. Текст: непосредственный // Кардиоваскулярная терапия и профилактика. 2022. Т. 21,№8. С. 3108.
- 11. Драпкина, О.М. Оценка уровня галектина-3 у пациентов с метаболическим синдромом и ишемической болезнью сердца / О.М. Драпкина, Р.Н. Шепель, Т.А. Деева. Текст : непосредственный // Российский кардиологический журнал. 2017. N = 3. C. 30-36.
- 12. Драпкина, О.М. Фибрилляция предсердий и фиброз миокарда / О.М. Драпкина. Текст : непосредственный // Российские Медицинские Вести. 2012. Т.17, № 2. С.17–26.
- 13. Драпкина, О.М. Характеристики пульсовой волны упациентов с артериальной гипертензией и сердечной недостаточностью ссохраненной фракцией выброса / О.М. Драпкина, Ю.В. Дуболазова. Текст : непосредственный // Российские Медицинские Вести. 2012. Т.17, № 4. С.20-31.
- 14. Золотовская, И.А. Фибрилляция предсердий:клинико-диагностические характеристики и их прогностическая значимость у пациентов, перенесших кардиоэмболический инсульт : дис. д-ра мед. наук : специальность 14.01.04 / Е.Л. Заславская. М., 2019. 310 с. Текст : непосредственный.
- 15. Золотовская, И.А. Риски развития неблагоприятных клинических исходов у пациентов с впервые диагностированной формой фибрилляции

- предсердий в остром периоде кардиоэмболического инсульта / И.А. Золотовская, И.Л. Давыдкин // Астраханский медицинский журнал. 2017. № 4.—С.70-77
- 16. Ионин, В.А. Галектин 3 и альдостерон у пациентов с фибрилляцией предсердийи метаболическим синдромом / В.А. Ионин. Текст : непосредственный // Российский кардиологический журнал. 2015. № 4 (120). С. 79-83.
- 17. Инфаркт миокарда у больных с фибрилляцией предсердий / С.А. Болдуева, М.В. Соловьева, Д.В. Облавацкий, В.С. Феоктистова. Текст : непосредственный // Кардиология. –2020. Т. 60, № 1. С. 53-61.
- 18. Коган, Е.А. Миокардит у пациентов с COVID-19, подтвержденный результатами иммуногистохимического исследования / Е.А. Коган // Кардиология. 2020. \mathbb{N} \mathbb{N} 7(60). C.4-10.
- 19. Лебедев, Д.И. Факторы развития фибрилляции предсердий после операции на«открытом» сердце / Д.И. Лебедев, А.В. Евтушенко, А.А. Хорлампенко. Текст : непосредственный // Комплексные проблемы сердечно—сосудистых заболеваний. 2021. N2. C.40-44.
- 20. Мосейчук, К.А. Маркеры фиброза миокарда у пациентов с фибрилляцией предсердий / К.А. Мосейчук, А.С. Синяева, Е.В. Филиппов. Текст: непосредственный // Доктор. Ру. 2020. Т. 19,№5. С. 14-18. DOI: 10.31550/1727–2378–2020–19–5–14–18.
- 21. Новые способы прогнозирования исходов и осложнений у пациентов с фибрилляцией предсердий / Н.А. Новикова, М.Ю. Гиляров, А.Ю. Суворов, А.Ю. Кучина. Текст : непосредственный // Вестник аритмологии. 2019. Т. 26, № 2. С. 49-50. DOI: 10.35336/VA-2019-2-49-50.
- 22. Оценка уровня галектина-3 у пациентов с гипертрофией миокарда левого желудочка на фоне метаболического синдрома / О.М. Драпкина, Р.Н. Шепель, Т.А. Деева, А.Н. Кабурова. Текст : непосредственный // Артериальная гипертензия. 2018. Т. 24, №3. С. 272-280.
- 23. Пациенты с фибрилляцией предсердий старческого возраста. Результаты трехлетнего наблюдения / А.Ю. Кучина., Н.А. Новикова., А.Ю.

- Суворов [и др.]. Текст : непосредственный // Кардиология и сердечнососудистая хирургия. — 2021.-T.14, №5. — С. 392-399.
- 24. Петракова, Е.С. Фибрилляция предсердий после операций аортокоронарного шунтирования: факторы риска, профилактика и лечение / Е.С. Петракова, Н.М.Савина, А.В. Молочков. Текст : непосредственный // Кардиология. 2020. № 9. С. 134-148.
- 25. Полянская, Е.А. Маркеры фиброза предикторы постоянной формы фибрилляции предсердий у пациентов с кардиоренальным синдромом / Е.А Петракова Текст : непосредственный // Российский медицинский журнал. 2023. №4. С.2-5.
- 26. Польшакова, И.Л. Сравнительный анализ факторов, влияющих на прогноз у больных с фибрилляцией предсердий по результатам исследования РЕКУР–ФП / И.Л. Польшакова, С.В. Поветкин. Текст : непосредственный // Рациональная Фармакотерапия в Кардиологии. 2019. Т.15, №5. С. 649-655. DOI:10.20996/1819–6446–2019–15–5–649–655
- 27. Рекомендации ESC 2020 по диагностике и лечению пациентов с фибрилляцией предсердий, разработанные совместно с Европейской ассоциацией кардиоторакальной хирургии (EACTS) / G. Hindricks, T. Potpara, N. Dagres [et al.]. Текст: непосредственный // Российский кардиологический журнал. 2021. Т. 26, №9. С. 234-329.
- 28. Роль трансформирующего фактора роста бета—1 и галектина 3 в формировании фиброза левого предсердия у пациентов с пароксизмальной формой фибрилляции предсердий и метаболическим синдромом / Е.Л. Заславская, А.Н. Морозов, В.А. Ионин [и др.]. Текст : непосредственный // Российский кардиологический журнал 2018. № 2(154). С. 60-6.
- 29. Связь между биомаркерами фиброза и эхокардиографическими параметрами у пациентов с различными формами фибрилляции предсердий / А.И. Кочетков, И.Ю. Орлова, О.Д. Остроумова [и др.]. Текст: непосредственный // Медицинский совет. 2024.– №18(6). С. 170-179.
 - 30. Факторы риска сердечно-сосудистой смертности у больных с

- постоянной фибрилляцией предсердий / О.П. Мамаева, Д.Ф. Егоров, А.М Подлесов [и др.]. Текст : непосредственный // Вестник аритмологии. 2008. С. 45-49.
- 31. Фибрилляция предсердий и тиреотоксикоз / Т.В. Тавровская, Т.Б. Моргунова, А.В. Тимофеев [и др.]. Текст : непосредственный // Вестник Аритмологии. 2009. N 56. С. 59-80.
- 32. Фибрилляция и трепетание предсердий. Клинические рекомендации 2020. / М.Г. Аракелян, Л.А. Бокерия, Е.Ю. Васильева [и др.].— Текст : непосредственный // Российский кардиологический журнал. 2021. Т. 26. №7. С. 4594. doi:10.15829/1560-4071-2021-4594.
- 33. Филатов, А.Г. Эпидемиология и социальная значимость фибрилляции предсердий. / А.Г. Филатов, Э.Г. Тарашвили // Анналы аритмологии. 2012. T.9. N = 2. C. 5-13.
- 34. Эпикардиальная жировая ткань и трансформирующий фактор роста бета1 факторы риска фибрилляции предсердий у пациентов с метаболическим синдромом? / Е.Л. Заславская, В.А. Ионин, С.Е. Нифонтов [и др.]. Текст : непосредственный // Артериальная гипертензия. 2018. Т. 24, № 3. С. 281-292.
- 35. ЭПОХА: Эпидемиология фибрилляции предсердий в репрезентативной выборке Европейской части Российской Федерации/ Ю.В. Мареев, Д.С. Поляков, Н.Е. Виноградова [и др.]. Текст: непосредственный // Кардиология. 2022. Т. 62, № 4.– С.12-19.
- 36. Ярославская, Е.И. Связь фибрилляции предсердий с поражениями коронарного русла (по данным регистра коронарной ангиографии) / Е.И. Ярославская, В.А. Кузнецов, И.С. Бессонов. Текст : непосредственный // Российский кардиологический журнал. 2021. № 7. С. 12-18.
- 37. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio–Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the

- European Heart Rhythm Association (EHRA) of the ESC / G. Hindricks, T. Potpara, N. Dagres [et al.]. Text: visual //The European Heart Journal. 2021. Vol. 42, № 5. P. 373-498. doi: 10.1093/eurheartj/ehaa612.
- 38. ACCF/AHA guideline for the management of heart failure: a report of the AmericanCollege of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines / C.W. Yancy, M. Jessup, B. Bozkurt [et al.]. Text: visual //Journal of the American College of Cardiology. 2013. Vol. 62, № 16. P. 147-239.
- 39. Activation of TGF- β 1/ α -SMA/Col I ProfibroticPathway in Fibroblasts by Galectin-3 Contributes toAtrial Fibrosis in Experimental Models and Patients / H. Shen, J. Wang, J. Min [et al.]. Text : visual // Cell Physiol Biochem. 2018. Vol. 47. P. 851-863.
- 40. Ambale-Venkatesh, B. Cardiac MRI: a central prognostic tool in myocardial fibrosis / B. Ambale-Venkatesh, J.A. Lima. Text : visual // Nature Reviews Cardiology . 2015. Vol. 12. P. 18-29. doi: 10.1038/nrcardio.2014.159.
- 41. Analysis of probable lipotoxic damage and myocardial fibrosis in epicardial obesity / G. Chumakova, O. Gritsenko, O. Gruzdeva, Y. Dyleva. Text: visual // Aging (Albany NY). 2021. Vol. 13, № 11. P. 14806-14815. https://doi.org/10.18632/aging.203148.
- 42. Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts / W. Schorb, G.W. Booz, D.E. Dostal [et al.]. Text: visual // Circulation Research. 1993. Vol. 72. P. 1245–54. doi: 10.1161/01.RES.72.6.1245.
- 43. Atrial fibrillation among Russian men and women aged 55 years and older:prevalence, mortality, and associations with biomarkers in a population-based study / M.A. Shkolnikova, D.A. Jdanov, R.A. Ildarova, [et al.].—Text: visual // Journal of Geriatric Cardiology: JGC. 2020. Vol. 17(2). P. 74-84. doi:10.11909/j.issn.1671-5411.2020.02.002
- 44. Atrial Fibrillation Manifestations Risk Factors and Sex Differences in a Population–Based Cohort (From the Gutenberg Health Study) / C. Magnussen, F. M. Ojeda, Ph. S. Wild [et al.]. Text: visual // American Journal of Cardiology. 2018. Vol. 122, Issue 1. P. 76-82.

- 45. Basic and advanced echocardiography in advanced heart failure: an overview / M.C. Pastore, G.E. Mandoli, H.S. Aboumarie [et al.]. Text: visual // Heart Failure Reviews. 2020.– Vol.25.– P.937-48. doi: 10.1007/s10741-019-09865-3.
- 46. Bujak, M. The role of TGF $-\beta$ signaling in myocardialinfarction and cardiac remodeling / M. Bujak, N.G. Frangogiannis. Text : visual // Cardiovascular Research. 2007. Vol. 74. P. 184-95.
- 47. Campbell, S.E. Angiotensin II stimulated expression of transforming growth factor-beta1 in cardiac fibroblasts and myofibroblasts / S.E. Campbell, L.C. Katwa. Text: visual // Journal of Molecular and Cellular Cardiology. 1997. Vol. 29. P. 1947-58. doi: 10.1006/jmcc.1997.0435.
- 48. Cardiac fibroblast tomyofibroblast differentiation in vivo and in vitro: expression of focaladhesion components in neonatal and adult rat ventricular myofibroblasts / J.J. Santiago, A.L. Dangerfield, S.G. Rattan [et al.]. Text: visual // Developmental Dynamics. 2010. Vol. 239. P. 1573-84.
- 49. Characterization of angiotensin II receptors in cultured adult rat cardiac fibroblasts. Coupling to signaling systems and gene expression / M. Crabos, M. Roth, A.W. Hahn, P. Erne. Text: visual // The Journal of Clinical Investigation 1994. Vol. 93. P. 2372-8. doi: 10.1172/JCI117243.
- 50. Clustering of Unhealthy Lifestyle and the Risk of Adverse Events in Patients With Atrial Fibrillation / S.–R. Lee, E.–K. Choi, S.–H. Park [et al.]. Text: visual // Frontiers in Cardiovascular Medicine. 2022. Vol. 9. P. 885016. doi: 10.3389/fcvm.2022.885016.
- 51. CMR–verified diffuse myocardial fibrosis is associated withdiastolic dysfunction in HFpEF / M.Y. Su, L.Y. Lin, Y.H. Tseng [et al.]. Text : visual // JACC Cardiovasc Imaging. 2014. Vol. 7, № 10. P. 991–997.
- 52. Controlling cardiac fibrosis through fibroblast state space modulation / I.M. Reichardt, K.Z. Robeson, M. Regnier [et al.]. Text : visual // Cellular Signalling.– 2021.– Vol. 79. P. 109888.
 - 53. Cox, D.A. Transforming growth factor-beta 3 / D.A. Cox. Text : visual //

- Cell biology international. 1995. Vol. 19. P. 357-72.
- 54. Diastolic dysfunction in hypertensive hearts: roles of perivascular inflammation and reactive myocardial fibrosis / H. Kai, F. Kuwahara, R. Tokuda, T. Imaizumi. Text: visual // Hypertension Research. 2005. Vol. 28, № 6. P. 483-490.
- 55. Dumic, J. Galectin–3: an open–ended story / J. Dumic, S. Dabelic, M. Flogel. Text: visual // Biochim BiophysActa. 2006. Vol. 1760. P. 616-635.
- 56. Effects of AT1– and beta–adrenergic receptor antagonists on TGF–beta1–induced fibrosis in transgenic mice / U. Seeland, A. Schäffer, S. Selejan [et al.]. Text: visual // European Journal of Clinical Investigation. 2009. Vol. 39. P. 851-859.
- 57. Elevation of Smads 2, 3, and 4, decorin and TGF–βin the chronic phase ofmyocardial infarct scar healing / J. Hao, H. Ju, S. Zhao [et al.]. Text: visual //Journal of Molecular and Cellular Cardiology. 1999. Vol. 31. P. 667-78.
- 58. Evaluation of the C2HEST Risk Score as a Possible OpportunisticScreening Tool for Incident Atrial Fibrillation in a Healthy Population (From a Nationwide Danish Cohort Study). / G.Y.H. Lip, F. Skjøth [et al.]. Text: visual // The American Journal of Cardiology. 2020. Vol. 125(1). P. 48-54. doi:10.1016/j.amjcard.2019.09.034
- 59. Expression of angiotensin–converting enzyme in remaining viable myocytes of human ventricles after myocardial infarction / S. Hokimoto, H. Yasue, K. Fujimoto [et al.]. Text: visual // Circulation. 1996. Vol. 94. P. 1513-8. doi: 10.1161/01.CIR.94.7.1513.
- 60. Expression of transforming growth factor-beta 1 in specific cells and tissues of adult and neonatal mice / N.L. Thompson, K.C. Flanders, J.M. Smith [et al.]. Text: visual // Journal of Cell Biology. 1989. Vol. 108. P. 661-9.
- 61. Frangogiannis, N.G. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities / N.G. Frangogiannis. Text : visual // Molecular Aspects of Medicine. 2019. Vol. 65. P. 70-99.
 - 62. Fukuda, N. Molecular mechanisms of the exaggerated growth of

- vascularsmooth muscle cells in hypertension / N. Fukuda. Text : visual // Journal of Atherosclerosis and Thrombosis. 1997. Vol. 4. P. 65-72.
- 63. Galectin–3 and post–myocardial infarction cardiac remodeling / W.C. Meijers, A.R. van der Velde, D.A. Pascual–Figal, R.A. de Boer. Text : visual // European Journal of Pharmacology. 2015. Vol. 763. P. 115-121. doi: 10.1016/j.ejphar.2015.06.025.
- 64. Galectin-3 and myocardial fibrosis in nonischemic dilated cardiomyopathy / G. Vergaro, A. Del Franco, A. Giannoni [et al.]. Text : visual // International Journal of Cardiology. 2015. Vol. 184. P. 96-100.
- 65. Galectin–3 in autoimmunity and autoimmune diseases / F.L. de Oliveira, M. Gatto, N. Bassi [et al.]. Text : visual // Experimental Biology and Medicine(Maywood). 2015. Vol. 240, № 8. P. 1019-1028. doi: 10.1177/1535370215593826.
- 66. Galectin–3 in Cardiovascular Diseases / V. Blanda, U.M. Bracale, M.D. Di Taranto, G. Fortunato.— Text: visual // International Journal of Molecular Sciences.— 2020.—Vol.3, №21(23).—P. 9232.
- 67. Galectin–3 in patients with atrial fibrillation undergoing radiofrequency catheter ablation / J. Kornej, J. Schmidl, L. Ueberham [et al.]. Text: visual //Public Library of Science ONE. 2015. Vol. 10, № 4. P. e0123574. doi: 10.1371/journal.pone.0123574.
- 68. Galectin–3 marks activated macrophages in failure–prone hypertrophied hearts and contributes to cardiac dysfunction / U.C. Sharma, S. Pokharel, T.J. van Brakel [et al.]. Text: visual // Circulation. 2004. Vol. 110. P. 3121-8. doi: 10.1161/01.CIR.0000147181.65298.4D.
- 69. Galectin-3 predicts long-termcardiovascular death in high-risk patients with coronaryartery disease / G. Maiolino, G. Rossitto, L. Pedon [et al.]. Text: visual // Arteriosclerosis Thrombosis and Vascular Biology. 2015. Vol. 35. P. 725-732.
- 70. Galectin–3, a marker of cardiac fibrosis, predicts incident heart failure in the community / J.E. Ho, C. Liu, A. Lyass [et al.]. Text: visual // Journal of the American College of Cardiology. 2012. Vol. 60. P. 1249-1256. doi:

- 10.1016/j.jacc.2012.04.053.
- 71. Galectin-3: a novel mediator failure development and progression / R.A. de Boer, A.A. Voors, P. Muntendam [et al.]. Text : visual // European Journal of Heart Failure. 2009. Vol. 11. P. 811-817.
- 72. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling byinterfering with myocardial fibrogenesis / L. Yu, W.P. Ruifrok, M. Meissner [et al.]. Text: visual // Circulation Heart Failure. 2013. Vol. 6. P. 107-117.
- 73. Heart Disease and Stroke Statistics—2021 Update / S. S. Virani [et al.]. Text : visual // Circulation. 2021. P.243-254.
- 74. Homo— and Heterocellular Junctions in Cell Cultures:An Electrophysiological and Morphological Study / A. Hyde, B. Blondel, A. Matter [et al.]. Text: visual // Progress in Brain Research. 1969. Vol. 31. P. 283-311. doi: 10.1016/S0079–6123(08)63247–1.
- 75. Hynes, R.O. The extracellular matrix: not just pretty fibrils / R.O. Hynes. Text: visual // Science. 2009. Vol. 326, № 5957. P. 1216-1219.
- 76. Identification of Smad7, a TGFβinducible antagonist of TGF–β signalling / A. Nakao, M. Afrakhte, A. Morn [et al.]. Text : visual // Nature. 1997. Vol. 389. P. 631.
- 77. In situ localization of transforming growth factor β1 inporcine heart: enhanced expression after chronic coronary arteryconstriction / M. Wünsch, H. Sharma, T. Markert [et al.]. Text: visual // Journal of Molecular and Cellular Cardiology 1991. Vol. 23. P. 1051-62.
- 78. Increasedlevels of galectin–3 were associated with prediabetes and diabetes:new risk factor? / H. Yilmaz, M. Cakmak, O. Inan [et al.]. Text: visual // Journal of Endocrinological Investigation. 2014. Vol. 38, № 5. P. 1-7.
- 79. Integrin $\alpha V\beta6$ —mediated activation of latent TGF- β requires the latent TGF- β binding protein-1 / J.P. Annes, Y. Chen, J.S. Munger, D.B. Rifkin. Text: visual // Journal of Cell Biology. 2004. Vol.165. P. 723-34.
 - 80. Krauser, D.G. Ventricular hypertrophy and hypertension: prognostic

- elements and implications for management / D.G. Krauser, R.B. Devereux. Text: visual // Herz. 2006. Vol. 31. P. 305-316.
- 81. Leask, A. Potential therapeutic targets for cardiac fibrosis. TGF β , angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation / A. Leask. Text: visual // Circulation Research. 2010. Vol. 106, No 11. P. 1675-80.
- 82. Life time risks, projected numbers, and adverse outcomes in asian patients with atrial fibrillation: a report from the Taiwan nationwide af cohort study / T.F. Chao, C.J. Liu, T.C. Tuan [et al.]. Text: visual // Chest. 2018. Vol. 153. P. 453-66. doi: 10.1016/j.chest.2017.10.001.
- 83. Ligation of protease–activated receptor 1 enhances α v β 6 integrin–dependent TGF– β activation and promotes acute lung injury / R.G. Jenkins, X. Su, G. Su [et al.]. – Text : visual // Journal of Clinical Investigation. – 2006. – Vol. 116. – P. 1606–14.
- 84. Lubrano, V. Role of oxidative stressrelated biomarkers in heart failure: galectin 3, α1-antitrypsin and LOX-1: new therapeutic perspective? / V. Lubrano, S. Balzan. Text: visual // Molecular and Cellular Biochemistry. 2020. Vol. 464. P. 143-152.
- 85. Mechanisms responsible forincreased circulating levels of galectin-3 in cardiomyopathy and heart failure / M.N. Nguyen, Y. Su, D. Vizi [et al.]. Text : visual // Scientific Reports. 2018. Vol. 8. P. 8213.
- 86. Molecular and cellular mechanisms involved in cardiac remodeling after acutemyocardial infarction / G. Vilahur, O. Juan–Babot, E. Peña [et al.]. Text : visual // Journal of Molecular and Cellular Cardiology. 2011. Vol. 50. P. 522-33.
- 87. Morikawa, M. TGF $-\beta$ and the TGF $-\beta$ family: context dependent roles in cell and tissue physiology / M. Morikawa, R. Derynck, K. Miyazono. Text : visual // Cold Spring Harbor Perspectives in Biology. 2016. Vol. 8. P. a021873.
- 88. Myocardial tissue characterization and fibrosis by imaging / T.D. Karamitsos, A. Arvanitaki, H. Karvounis [et al.]. Text : visual // JACC: Cardiovascular Imaging. –2020. Vol.3. P. 1221-1234. doi: 10.1016/j.jcmg.2019.06.030.

- 89. Myofibroblast–mediated mechanisms of pathological remodelling of the heart / K.T. Weber, Y. Sun, S.K. Bhattacharya [et al.]. Text : visual // Nature Reviews Cardiology. –2013. Vol. 10. P. 15-26. doi: 10.1038/nrcardio.2012.158.
- 90. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin / Y. Liu, M. D'Ambrosio, T. Liao [et al.]. Text : visual // American Journal of Physiology Heart and Circulatory Physiology. 2009. Vol. 296. P. H404–12. doi: 10.1152/ajpheart.00747.2008.
- 91. Nakamori, S. Myocardial tissue imaging with cardiovascular magnetic resonance / S. Nakamori, K. Dohi. Text : visual // International Journal of Cardiology. 2022. Vol. 80, № 5. P. 377-85. doi:10.1016/j.jjcc.2022.02.006.
- 92. New-onset atrial fibrillation and associated outcomes and resource use among critically ill adults—a multicenter retrospective cohort study / S.M. Fernando, R. Mathew, B. Hibbert [et al.]. Text: visual // Critical Care. 2020. Vol. 24, №1. P. 15. https://doi.org/10.1186/s13054-020-2730-0
- 93. New onset atrial fibrillation is associated with elevated galectin–3 levels / D. Chen, N. Procter, V. Goh [et al.]. Text : visual // International Journal of Cardiology. 2016. Vol. 223. P. 48-49. doi: 10.1016/j.ijcard.2016.08.172.
- 94. Newlaczyl, A.U. Galectin–3–a jack–of–all–trades in cancer / A.U. Newlaczyl, L.G. Yu. Text : visual // Cancer Letters. 2011. Vol. 313. P. 123-128. doi: 10.1016/j.canlet.2011.09.003.
- 95. Novel anti-inflammatory mechanisms of N-Acetyl-Ser-Asp-Lys-Pro in hypertension-induced target organ damage / U. Sharma, N. Rhaleb, S. Pokharel [et al.]. Text: visual // American Journal of Physiology Heart and Circulatory Physiology. 2008. Vol. 294. P. H1226-32. doi: 10.1152/ajpheart.00305.2007.
- 96. Novel Approaches in CardiacImaging for Non–invasive Assessmentof Left Heart Myocardial Fibrosis / G.E. Mandoli, F.D'Ascenzi, G. Vinco [et al.]. Text: visual // Frontiers in Cardiovascular Medicine. 2021. Vol. 8.– P. 614235. doi: 10.3389/fcvm.2021.614235.
 - 97. Oida, T. Over expression of TGF-β1 gene induces cell surfacelocalized

- glucose–regulated protein 78–associated latency–associated peptide /TGF–β / T. Oida, H.L. Weiner. Text : visual // Journal of Immunology. 2010. Vol. 185. P. 3529-35.
- 98. Patterns of myocardial fibrosis / K.T. Weber, R. Pick, J.E. Jalil [et al.]. Text: visual // Journal of Molecular and Cellular Cardiology. 1989. Vol. 21 (Suppl. 5). P. 121-131. doi: 10.1016/0022–2828(89)90778–5.
- 99. Pietrzak, R. Evaluation of Galectin–3 Plasma Concentration in Adolescents with Ventricular Arrhythmia / R. Pietrzak, T. M. Ksiazczyk, E. Górska. Text: visual // International Journal of Environmental Research and Public Health (IJERPH). 2021. Vol. 18, № 5. P. 2410.
- 100. Post–myocardial infarction fibrosis: Pathophysiology, examination, and intervention / X.Yin, X. Pan [et al.]. Text : visual // Frontiers in Pharmacology.– 2023. Vol.28, №14.– P.1070973.
- 101. Plasma galectin–3 predicts clinical outcomes after catheter ablation in persistent atrial fibrillation patients without structural heart disease / X.Y. Li Wu, S.N. Wen, S.N. Nie [et al.]. Text : visual // Europace. 2015. Vol. 17. P. 1541-1547.
- 102. Preoperative hemoglobin A1c predicts atrial fibrillation after off–pump coronarybypass surgery / T. Kinoshita, T. Asai, T. Suzuki [et al.]. Text : visual // European Journal of Cardio-Thoracic Surgery. 2011. P. 102-107.
- 103. Properties and Functions of Fibroblasts and Myofibroblasts in Myocardial Infarction / H. Venugopal, A. Hanna, C.Humeres [et al.]. Text: visual // Cells.–2022.– Vol. 20, №11(9). P. 1386. doi: 10.3390/cells11091386.
- 104. Recommendations for cardiac chamber quantification by echocardiography inadults: an update from the american society of echocardiography and the europeanassociation of, cardiovascular imaging / R. M. Lang, B. P. Luigi, V. Mor-Avi [et al.]. Text: visual // European Heart Journal Cardiovascular Imaging . 2016. Vol. 17, N 4. P. 412-412.
- 105. Relationships between mitral annular calcification and cardiovascular events: A meta-analysis / T.K.M. Wang, B.P. Griffin, B. Xu,L.L. Rodriguez, Z.B. Popovic, M.A. Gillinov, G.B. Pettersson, M.Y. Desai //Echocardiography. 2020. Vol. 37(11). P. 1723-1731. DOI: 10.1111/echo.14861.

- 106. Revisiting Cardiac Cellular Composition / A.R. Pinto, A. Ilinykh, M.J. Ivey [et al.]. Text: visual // Circulation Research.—2016.—Vol.5, №118 (3). P. 400-409.
- 107. Ruvolo, P.P. Galectin 3 as a guardian of the tumor microenvironment / P.P. Ruvolo. Text: visual // Biochimica et Biophysica Acta. 2016. Vol. 1863. P. 427-437. doi: 10.1016/j.bbamcr.2015.08.008.
- 108. Sadoshima, J. Molecular characterization of angiotensin II–induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype / J. Sadoshima, S. Izumo. Text: visual // Circulation Research. 1993. Vol. 73. P. 413-23. doi: 10.1161/01.RES.73.3.413.
- 109. Segura, A.M. Fibrosis and heart failure / A.M. Segura, O.H. Frazier, L.M. Buja. Text : visual // Heart Failure Reviews. 2014. Vol. 19. P. 173-185. doi: 10.1007/s10741–012–9365–4.
- 110. Serum galectin-3 is elevated in obesity andnegatively correlates with glycosylated hemoglobin in type 2 diabetes / J. Weigert, M. Neumeier, J. Wanninger [et al.]. Text: visual // The Journal of Clinical Endocrinology and Metabolism. 2010. Vol. 95, N_2 3. P.1404-1411.
- 111. Serum galectin–3 levels predict recurrences after ablation of atrial fibrillation / N. Clementy, N. Benhenda, E. Piver [et al.]. Text : visual// Scientific Reports. 2016. Vol. 6. P. 343572016.
- 112. Short-term Changes in Gal 3Circulating Levels After Acute Myocardial Infarction / G. Bivona, C. Bellia, B. Lo Sasso [et al.]. Text: visual // Archives of Medical Research. 2016. Vol. 47. P. 521-525.
- 113. Sun, Y. Infarct scar: a dynamic tissue / Y. Sun, K.T. Weber. Text : visual // Cardiovascular Research. 2000. Vol. 46. P. 250-6.103.
- 114. Sun, Y. RAS and connective tissue in the heart / Y. Sun, K.T. Weber. Text: visual // International Journal of Biochemistry and Cell Biology. 2003. Vol. 35, № 6. P.108.
- 115. Systemic inflammation is associated with myocardial fibrosis, diastolic dysfunction, and cardiac hypertrophy in patients with hypertrophic cardiomyopathy / L. Fang, A.H. Ellims, A.L. Beale [et al.]. Text: visual // American Journal of

- Translational Research. 2017. Vol. 9. P. 5063-5073.
- 116. T1 Mapping and Extracellular Volume Fraction in DilatedCardiomyopathy: A Prognosis Study / S. Li, D. Zhou, A. Sirajuddin [et al.]. Text: visual // Journal of the American College of Cardiology: Cardiovascular Imaging. 2022. Vol. 15, № 4. P. 578-90. doi:10.1016/j.jcmg.2021.07.023.
- 117. TGF-beta1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II / J.J. Schultz, S.A. Witt, B.J. Glascock [et al.]. Text: visual // Journal of Clinical Investigation. 2002. Vol. 109. P. 787-96. doi: 10.1172/JCI0214190.
- 118. The association of serum galectin–3 levels with atrial electrical and structural remodeling / M.U. Yalcin, K.M. Gurses, D. Kocyigit [et al.]. Text : visual // Journal of Cardiovascular Electrophysiology. 2015. Vol. 26. P. 635-640.
- 119. The impact of galectin–3 inhibition on aldosterone–induced cardiac and renal injuries / L. Calvier, E. Martinez–Martinez, M. Miana [et al.]. Text: visual // JACC: Heart Failure. 2015. Vol. 3. P. 59-67. doi: 10.1016/j.jchf.2014.08.002.
- 120. Theimpact of myocardial fibrosisbiomarkers in a heart failurepopulation with atrialfibrillation—TheHARVEST–Malmö study / Z. Nezami, H. Holm, M. Ohlsson [et al.]. Text: visual // Frontiers in Cardiovascular Medicine. 2022. Vol.9. P. 982871.doi: 10.3389/fcvm.2022.982871.
- 121. The infarcted myocardium solicits GM–CSF for the detrimental oversupply of inflammatory leukocytes / A. Anzai, J.L. Choi, S. He [et al.]. Text : visual // Journal of Experimental Medicine. 2017. Vol.6, №214 (11). P. 3293-3310. doi: 10.1084, jem.20170689.
- 122. Ticagrelor attenuates myocardial ischaemia-reperfusioninjury possibly through downregulating galectin-3expression in the infarct area of rats / X. Liu, Y. Gu, Y. Liu [et al.]. Text: visual// British Journal of Clinical Pharmacology. 2018. Vol. 84. P. 1180-1186.
- 123. Tissue Resident CCR2− and CCR2+ Cardiac Macrophages Differentially Orchestrate Monocyte Recruitment and Fate Specification Following Myocardial Injury / G. Bajpai, A. Bredemeyer, W.Li [et al.]. Text : visual // Circulation Research. 2019. Vol.18, №124(2). P. 263-278. doi: 10.1161, CIRCRESAHA.118.314028. PMID:

- 30582448; PMCID: PMC6626616.
- 124. Transforming growth factor βgene maps to human chromosome 19 long arm and to mouse chromosome 7 / D. Fujii, J.E. Brissenden, R. Derynck, U. Francke. Text: visual // Somatic Cell and Molecular Genetics. 1986. Vol. 12. P. 281-8.
- 125. Transforming growth factor—beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure—overloaded rats / F. Kuwahara, H. Kai, K. Tokuda [et al.]. Text: visual// Circulation. 2002. Vol. 106. P. 130-135. doi: 10.1161/01.CIR.0000020689.12472.E0.
- 126. Utility of aminoterminal pro-brain natriuretic peptide, galectin-3, andapelin for the evaluation of patients with acute heartfailure / R.R. van Kimmenade, J.L. Januzzi, P.T. Ellinor [et al.]. Text: visual // Journal of the American College of Cardiology.– 2006. Vol. 48. P. 1217-1224.
- 127. Weber, K.T. Cardiac interstitium in health and disease: the fibrillar collagennetwork / K.T. Weber. Text: visual // Journal of the American College of Cardiology. 1989. Vol. 13, № 7. P. 1637-52.
- 128. Zhendong, Cheng. Prognostic Value of Serum Galectin–3 in Chronic Heart Failure: A Meta–Analysis / Zhendong Cheng, Kefeng Cai, Chaoxian Xu. Text: visual // Frontiers in Cardiovascular Medicine. 2022. Vol. 9. P. 783707. doi: 10.3389/fcvm.2022.783707.
- 129. Younes, R. Evidence of Failed Resolution Mechanisms in Arrhythmogenic Inflammation, Fibrosis and Right Heart Disease / R. Younes, C.A. LeBlanc, R. Hiram // Biomolecules. −2022. − Vol.19, №12 (5). −P. 720.